

CALIFORNIA ENVIRONMENTAL CONTAMINANT
BIOMONITORING PROGRAM
(BIOMONITORING CALIFORNIA)
SCIENTIFIC GUIDANCE PANEL MEETING
CONVENED VIA HYBRID FORMAT BY:
OFFICE OF ENVIRONMENTAL HEALTH HAZARD ASSESSMENT
CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY
STATE OF CALIFORNIA

ELIHU M. HARRIS STATE OFFICE BUILDING
GEORGE ALEXEEFF ENVIRONMENTAL HEALTH LIBRARY
16TH FLOOR
1515 CLAY STREET
OAKLAND, CALIFORNIA

FRIDAY, NOVEMBER 14, 2025
1:00 P.M.

JAMES F. PETERS, CSR
CERTIFIED SHORTHAND REPORTER
LICENSE NUMBER 10063

APPEARANCES

PANEL MEMBERS:

Amy Padula, PhD, MSc, Acting Chair

Carl F. Cranor, PhD, MSL

Lara Cushing, PhD, MPH (Remote)

Timur S. Durrani, MD, MPH, MBA

Oliver Fiehn, PhD

Ulrike Luderer, MD, PhD (Remote)

Thomas McKone, PhD

Penelope (Jenny) Quintana, PhD, MPH (Remote)

José R. Suárez, MD, PhD, MPH

OFFICE OF ENVIRONMENTAL HEALTH HAZARD ASSESSMENT:

Kimberly Gettmann, PhD, Deputy Director, Division of Scientific Programs

Rebecca Belloso, MPH, Health Program Specialist I, Safer Alternatives and Biomonitoring Section, Reproductive and Cancer Hazard Assessment Branch

Stephanie Jarmul, MPH, Research Scientist Supervisor, Section Chief, Safer Alternatives Assessment and Biomonitoring Section, Reproductive and Cancer Hazard Assessment Branch

Martha Sandy, PhD, MPH, Chief, Reproductive and Cancer Hazard Assessment Branch

Daniel Sultana, MS, Research Scientist III, Safer Alternatives and Biomonitoring Section, Reproductive and Cancer Hazard Assessment Branch

McKenna Thompson, MPH, Research Scientist I, Safer Alternatives and Biomonitoring Section, Reproductive and Cancer Hazard Assessment Branch

APPEARANCES CONTINUED

CALIFORNIA DEPARTMENT OF PUBLIC HEALTH:

Kathleen Attfield, ScD, Supervisor, Exposure Surveillance and Epidemiology Unit, Environmental Health Investigations Branch

Dina Dobrača, MPH, Research Scientist III, Exposure Surveillance and Epidemiology Unit, Environmental Health Investigations Branch

Ian Tang, PhD, Research Scientist IV, Environmental Health Investigations Branch

Jeff Wagner, PhD, Supervisor, Environmental Health Laboratory Branch

Nerissa Wu, PhD, MPH, Supervisor, Exposure Assessment Section, Environmental Health Investigations Branch

GUEST SPEAKER:

Mohammad Heidarinejad, PhD, PE, Illinois Institute of Technology

Ileanna Navarro, Central California Environmental Justice Network

ALSO PRESENT:

John Balmes, MD, University of California, Berkeley

Julie Von Behren, MPH, University of California, San Francisco

INDEX

	<u>PAGE</u>
Welcome	
Kimberly Gettmann, PhD, Deputy Director, Division of Scientific Programs, OEHHA	1
Overview of the Meeting	
Amy Padula, PhD, MSc, Acting Chair, Scientific Guidance Panel (SGP)	5
Program Update	
Presentation: Nerissa Wu, PhD, California Department of Public Health (CDPH)	8
Panel and Audience Questions	18
Presentation: Ian Tang, PhD, CDPH	23
Panel and Audience Questions	30
Open Discussion and Input	46
Results and Impacts of the FRESSCA-Mujeres Project	
Presentation: Ileana Navarro, Central California Environmental Justice Network; Mohammad Heidarinejad, PhD, PE, Illinois Institute of Technology; Stephanie Jarmul, MPH, OEHHA	51
Panel and Audience Questions	82
Open Discussion Period and Input	88
Planning for 2026 SGP Meetings	
Presentation: Stephanie Jarmul, MPH, OEHHA	105
Panel and Audience Questions	107
Open Public Comment Period	113
Wrap-up and Adjournment	114
Reporter's Certificate	115

PROCEEDINGS

DR. KIMBERLY GETTMANN: Good afternoon. I'd like to welcome the Panel members.

Good afternoon. I'd like to welcome the Panel members and the audience to the November meeting of the Scientific Guidance Panel for Biomonitoring California, more formally known as the California Environmental Contaminant Biomonitoring Program. Thank you all for joining us today. I am Kim Gettmann, OEHHA's Deputy Director for Scientific Programs.

The Panel last met on August 27th, 2025. The August meeting included updates on Biomonitoring California Program activities including a presentation on the BiomSPHERE Study results. The Panel also heard from two guest speakers on the use of silicone wristbands to assess personal chemical exposures, followed by a discussion on the use of the silicone wristbands to complement biomonitoring studies.

STEPHANIE JARMUL: Sorry, can you talk a little bit more into the mic. It's hard to hear.

DR. KIMBERLY GETTMANN: Is this better?

STEPHANIE JARMUL: Yes.

DR. KIMBERLY GETTMANN: Okay. Thank you.

Key discussion topics included: potential source of elevated inorganic arsenic in participants of the

1 California Regional Exposures Study in Los Angeles, or
2 CARE-LA; analytical considerations when biomonitoring for
3 microplastics; the utility of microsampling devices to
4 collect blood for biomonitoring studies; the evaluation of
5 results return materials that study participants receive.
6 The Panel also discussed results from the BiomSPHERE
7 study, including the higher levels of 2-naphthol, a
8 metabolite of naphthalene, in BiomSPHERE participants
9 compared to levels in the NHANES.

10 In the afternoon, the Panel discussed the
11 possibility of using silicone wristbands to complement
12 biomonitoring studies with guest speakers and Program
13 staff. Key discussion topics on the wristbands included:
14 the utility of wristbands of passive air samplers compared
15 to other methods of passive air samp -- or air monitoring;
16 best practices, ideal study design, and quality
17 assurance/quality control procedures necessary to ensure
18 accuracy of measurements of chemicals on wristbands;
19 chemicals or chemical groups that are appropriate, or not
20 appropriate, to measure using silicone wristbands, and
21 variables that might influence chemical concentrations on
22 the wristbands; ideal populations the Program should
23 consider for use of silicone wristbands in biomonitoring
24 studies; and participant's perspectives on receiving
25 wristband results.

1 The summary and transcript of the meeting is
2 posted on the August meeting page of the Program's website
3 at biomonitoring.ca.gov. I'd like to announce Amy Padula
4 will be our Acting SGP Chair for this meeting. I will now
5 invite Panel members to introduce themselves by name and
6 affiliation. Let's start with Jenny Quintana who is
7 attending remotely. Jenny has been granted a reasonable
8 accommodations to attend this meeting remotely and
9 maintain with her camera off.

10 PANEL MEMBER QUINTANA: Hi, everybody, I'm
11 Penelope or nicknamed Jenny, Quintana from the San Diego
12 State University School of Public Health, Division of
13 Environmental Health.

14 DR. KIMBERLY GETTMANN: Thank you.

15 I will now call on Panel members Lara Cushing and
16 Ulrike Luderer from UC Irvine who will also be attending
17 remotely.

18 PANEL MEMBER CUSHING: Hi. I'm Lara Cushing,
19 Associate Professor of Environmental Health Sciences at
20 UCLA.

21 PANEL MEMBER LUDERER: Hello. I'm Ulrike
22 Luderer. I'm Professor of Environmental and Occupational
23 Health at UC Irvine.

24 DR. KIMBERLY GETTMANN: Thank you. And now I
25 will start at the end with Tom.

1 STEPHANIE JARMUL: Sorry. This is Stephanie
2 Jarmul. Just to make an announcement that there are very
3 few microphones. I apologize, so we'll need to pass them
4 around and make sure you talk directly into them when
5 you're speaking. Thank you.

6 PANEL MEMBER MCKONE: I'm Tom McKone, Professor
7 Emeritus of Environmental Health Sciences at the
8 University of California, Berkeley, School of Public
9 Health.

10 DR. KIMBERLY GETTMANN: José.

11 PANEL MEMBER SUÁREZ: José Suárez, Associate
12 Professor in the Herbert Wertheim School of Public Health
13 and in the Department of Pediatrics at UC San Diego.

14 DR. KIMBERLY GETTMANN: Oliver.

15 PANEL MEMBER FIEHN: Oliver Fiehn, UC Davis. I'm
16 a Professor in the Genome Center.

17 DR. KIMBERLY GETTMANN: Amy.

18 ACTING CHAIR PADULA: Amy Padula, Associate
19 Professor in the Department of Obstetrics, Gynecology, and
20 Reproductive Sciences at the University of California, San
21 Francisco.

22 DR. KIMBERLY GETTMANN: Timur.

23 PANEL MEMBER DURRANI: I'm Timur Durrani. I'm
24 Professor of Medicine at UCSF in the Division of
25 Occupational, Environmental, and Climate Medicine.

1 DR. KIMBERLY GETTMANN: And Carl.

2 PANEL MEMBER CRANOR: Carl Cranor. I'm a
3 distinguished Professor Emeritus at UC Riverside in
4 Philosophy and Professor -- and distinguished Professor --
5 not distinguished Professor -- Faculty Member of
6 Environmental Toxicology at University of California,
7 Riverside.

8 DR. KIMBERLY GETTMANN: Now, I'll hand off
9 this -- hand off the meeting to Acting Panel Chair Amy
10 Padula, who will provide more details about today's
11 meeting.

12 ACTING CHAIR PADULA: Thank so much, Kim.

13 So as a reminder, for Panel members, please
14 comply as usual with the Bagley-Keene Open Meeting
15 requirements, that all discussions and deliberations of
16 the Panel about subject matters at issue today need to be
17 conducted during the meeting, not on breaks or with
18 individual members of the Panel on- or off-line, including
19 via phone, email, text, or chats. And Panel members who
20 are attending remotely must visibly appear on camera, with
21 the exception of Jenny, during the open portion of the
22 meeting. And if you are unable to keep your camera on
23 during the meeting, because it's technologically
24 impractical, please make an announcement when you turn
25 your camera off.

1 And additionally, if someone older than 18 is in
2 the room with Panelists, who are attending remotely, you
3 must disclose the presence of that person and their -- and
4 their general relationship to you. So I just want to
5 confirm with our Panelists that are online, Lara, Ulrike,
6 and Jenny.

7 PANEL MEMBER CUSHING: (Nods head). (Thumb up).

8 PANEL MEMBER LUDERER: (Nods head). (Thumb up).

9 ACTING CHAIR PADULA: And as for an overview of
10 the meeting, so we will hear an update on Program
11 activities, including a presentation on persistent organic
12 pollutant levels in Californians. The second portion of
13 the meeting will include a joint presentation of
14 collaborators -- collaborators on results and impacts of
15 the Farmworker Women and Respiratory Exposure to Smoke
16 From Swamp Cooler Air, the FRESSCA-Mujeres study. And
17 finally, we'll hear about and have an opportunity to
18 provide input on plans for the Scientific Guidance Panel
19 meetings in 2026. And there will be time for questions
20 from the Panel and audience after each presentation. And
21 if SGP members wish to speak or ask a question, please
22 raise your hand and I'll call on you. Jenny, you can
23 speak up, since I'm not sure if I'll see your hand, but --
24 and then you can ask your question or provide comment.

25 If online webinar attendees have questions or

1 comments during the question period after each talk, you
2 can submit them via the Q&A feature of Zoom or by email to
3 biomonitoring@oehha.ca.gov. We will not be using the chat
4 function during this meeting, and please keep your
5 comments brief and focused on the items under discussion.
6 Relevant comments will be read aloud and paraphrased when
7 necessary.

8 If align -- if online attendees wish to speak
9 during the public period -- public comment period and
10 discussion session, please use the "Raise Hand" feature in
11 the Zoom webinar and Rebecca Belloso will call on you at
12 the appropriate time. Please make sure that you join the
13 webinar under the name you would like to be identified as
14 when commenting, including if you would like to be -- if
15 would like to remain anonymous. If you are attend --
16 attending in person and wish to comment during the public
17 comment period and discussion session, please come to the
18 front or raise your hand, and I will call on you at the
19 appropriate time.

20 For the benefit of the transcriber, we encourage
21 you to clearly identify yourself before providing comment
22 and write your name and affiliation on the sign-in sheet
23 at the back of the room. However, there's no obligation
24 to identify yourself and you are free to comment
25 anonymously, if you wish. At the end of the meeting,

1 there will be time for open public comment period.

2 And I think now we will begin the first
3 presentation. So Nerissa Wu will be the -- providing the
4 first presentation. And she leads the Exposure Assessment
5 Section in the Environmental Health Investigations Branch
6 at the California Department of Public Health and the
7 Program Lead for Biomonitoring California, and she will
8 provide an update on the current Program activities.

9 (Slide presentation).

10 DR. NERISSA WU: All right. Thank you, Amy. And
11 welcome everybody to our last Scientific Guidance Panel
12 meeting of the year.

13 [SLIDE CHANGE]

14 DR. NERISSA WU: As usual, I will be giving the
15 Program update covering the usual things that I talk
16 about, surveillance, community-focused studies, laboratory
17 work and our outreach and communications activities.

18 [SLIDE CHANGE]

19 DR. NERISSA WU: As you remember, we have a
20 number of surveillance studies in the works. We have:
21 CARE, the California Regional Exposures Study; STEPS, the
22 Studying Trends in Exposure in Prenatal Samples; and
23 MAMAS, Measuring Analytes in Maternal Archived Samples. I
24 will actually only be touching on CARE and STEPS, because
25 we have a more detailed presentation on MAMAS from the

1 presenter after me.

2 [SLIDE CHANGE]

3 DR. NERISSA WU: So news from the CARE study.
4 Toki Fillman's work, in which she has presented on
5 associations between PFAS in drinking water and serum PFAS
6 levels, she's presented it here as a topic of discussion.
7 This work has just been published in the Journal of
8 Exposure Science and Environmental Epidemiology. It's
9 open access and there's also a link available on our
10 website if you are looking for that publication.

11 So in addition to that paper, we also have a
12 two-page fact sheet, which gives a high level summary of
13 the paper. And it's currently in our review chain, but we
14 expect to have that released publicly soon.

15 [SLIDE CHANGE]

16 DR. NERISSA WU: Also, from the CARE Study, we
17 talked about at our last meeting about new data on
18 speciated arsenic and phenols for CARE-LA. We've been
19 meeting with different researchers to discuss potential
20 directions and approaches to research and to that -- and
21 to exposure sources. We did also say that we're going to
22 post the summary statistics for speciated arsenic and
23 phenols. We haven't yet done so, because we noted a small
24 calculation error on the slides. And so we'll be
25 correcting that. We'll be posting the summary statistics,

1 and we'll also issue a new set of slides. The storyline
2 doesn't change. It's a very numerical -- it's a very
3 small numerical change, but we just want to make sure we
4 have the most accurate numbers in our -- on our public
5 website.

6 So we also have new laboratory results, speciated
7 arsenic for CARE-2 study participants has just been
8 received by EHIB. So we'll be conducting results return
9 and summary statistics for those. And then, of course,
10 that data can be folded in with the CARE-LA data, giving
11 us more power to do statistical analyses.

12 We're also working on the phenols analyses for
13 the CARE-2 participants and we expect to have those next
14 year.

15 [SLIDE CHANGE]

16 DR. NERISSA WU: And STEPS. And this is a study
17 that used -- uses banked prenatal screening samples from
18 the Genetic Disease Screening Program to determine
19 population estimates of PFAS exposures over time. In
20 Orange County - I think last time we talked about this -
21 there were a number of samples that had to be rerun for QA
22 issues. That's been completed, data is in review, and
23 it's projected that we'll have the data finalized and
24 reported to us in early December. And the lab is
25 continuing to make progress with the Fresno County

1 samples. We're around 75 percent of the lab run. And we
2 can't really talk a lot about the STEPS data yet, because
3 it's still being finalized, but we're really excited to
4 see the data, because it's going to help us understand,
5 not only the temporal trends, but also help us understand
6 what PFASs we need to keep our eyes on.

7 And in related news, this is not STEPS, but
8 related to the issue of identifying the universe of PFASs
9 of concern, we have sent samples from the Intra-Program
10 Pilot study, the IPP, to Amina Salamova's lab for
11 measurement of ultra-short chain PFASs, and we're
12 expecting that data to be reported to us in early 2026 as
13 well.

14 [SLIDE CHANGE]

15 DR. NERISSA WU: So turning to community-focused
16 studies, I will be providing updates on these three
17 community studies: ACE, the Asian/Pacific Islander
18 Community Exposures Project; BiomSPHERE, the Biomonitoring
19 component of the San Joaquin Valley Pollution and Health
20 Environmental Research Study; and I'll be introducing
21 CHAIRS, the Community Health and Air Quality Implications
22 of Refinery Retirements in Los Angeles.

23 [SLIDE CHANGE]

24 DR. NERISSA WU: For ACE, you've heard Kelly Chen
25 talk about her work, looking at the associations between

1 seafood consumption and PFAS serum levels. This has been
2 submitted to the journal Exposure and Health. And we just
3 heard on Monday that that manuscript has been accepted, so
4 we expect that to be coming out in publication quite soon.

5 And our outreach and communication folks have
6 been working on different ways to get this really
7 important message out to broad audiences. So, as I
8 mentioned, for Toki's paper, there will be a two-page
9 summary of findings that will be distributed, as well as a
10 postcard that's in lay language, very simple message that
11 will go out to all study participants, but we'll also be
12 distributing it at community events and to our community
13 partners to pass along to their constituents.

14 There's also a suite of social media postings on
15 PFASs generally, but more specifically about seafood and
16 drinking water. And this approach to publication also
17 applies to another paper we have coming out, that I don't
18 have a slide on, because it's such recent news. I want to
19 mention that Kathleen Attfield's paper on flame retardant
20 levels following household furniture replacement has also
21 been accepted for publication and will be out in early
22 December.

23 And similar to ACE, we have a suite of
24 communications materials coming out on that. So I should
25 really acknowledge our Biomonitoring Outreach and

1 Communications group, which has been super, super
2 productive and active and responsive to all of these --
3 all of these findings and publications we have going out.

4 [SLIDE CHANGE]

5 DR. NERISSA WU: In BiomSPHERE, the focus has
6 been on results return evaluation, which we talked a
7 little bit about last time. We've been working with UC
8 Merced and the Central California Asthma Coalition to
9 assess our results return materials. We returned
10 BiomSPHERE results over the summer. And then CCAC reached
11 out to recruit participants to be part of one-on-one
12 interviews about their experience with our results return
13 materials. They then asked those interview participants
14 to be part of a focus group to discuss both the existing
15 paper materials that they had seen, but then also to look
16 at the same type of materials, but presented through the
17 Silent Spring DERBI platform.

18 They have just finished running three focus
19 groups, two in Spanish, one in English, each with five to
20 eight participants. So we don't have transcribed notes
21 from that. We've just gotten some anecdotal findings from
22 them. But, you know, the challenges we face that are
23 inherent to biomonitoring, of course, are present in
24 this -- in this evaluation as well. Our biomonitoring
25 message is complex and it's hard to boil down to short

1 simple sentences, and results are not really a
2 one-size-fits-all situation. We do hear from participants
3 who want all the science, they want all the details, but
4 we also are hearing from many participants that they
5 really need a much more apparent readily accessible
6 message back to them about their results.

7 So again, illustrating it's really important for
8 us to continue to do these evaluations, and particularly
9 to include a diverse group of participants, so that we are
10 aware of and hearing about the challenges that they face
11 when they see our materials.

12 [SLIDE CHANGE]

13 DR. NERISSA WU: I'm going to briefly introduce
14 the CHAIRS Study, Community Health and Air Quality
15 Implications of Refinery Retirements in Los Angeles. This
16 is a collaboration with UCLA with Lara, UC Irvine, and
17 with Yale University. So the goal of this study is to
18 assess the retirement of two petroleum refineries in Los
19 Angeles, if it's associated with changes in exposure to
20 air pollutants and various markers of health.

21 So the study will include Fresh Air wristbands.
22 They are a little bit different than the silicone
23 wristbands we talked about last time. There will be
24 stationary monitors and collection of health indicators,
25 including blood pressure, lung function, and airway

1 | inflammation.

2 So the role of Biomonitoring California is to
3 look at biomarkers of exposure. There will be up to 150
4 residents of the surrounding communities, including Carson
5 and Wilmington. Participants will provide four urine
6 samples in total, two while the refineries are active, so
7 study enrollment and sample collection is already
8 underway. And then the refineries are scheduled to be
9 shut down at the end of the year and then two more samples
10 will be collected in fall 2026.

11 Right now, we're planning to have EHL analyze the
12 urine samples for metals, along with speciated -- sorry,
13 along with specific gravity and creatinine for dilution
14 correction, and then aliquots will be stored for potential
15 analyses of VOCs and PAHs. So that's just a very quick
16 overview. There will be subsequent meetings when we talk
17 more about the details of that study.

18 | [SLIDE CHANGE]

19 DR. NERISSA WU: And then just briefly, I've
20 already mentioned our lab activities in conjunction with
21 our projects. EHL is working to provide CARE-2 data. We
22 just got our speciated arsenic, which is awesome, and
23 phenols analyses are underway for the remaining 194
24 participants of CARE-2.

25 [SLIDE CHANGE]

1 DR. NERISSA WU: And ECL is focused on analyzing
2 the STEPS samples. They still have Fresno and then the
3 Los Angeles samples. And then we will be getting more
4 samples from the 2024 births.

5 They also just completed proficiency testing for
6 persistent organic pollutants, including PCBs, PBDEs and
7 organochlorine pesticides. And then in addition to
8 conducting analyses for existing studies, both labs are
9 preparing to participate in the next round of the
10 Intra-Program Pilot Study, which is designed to evaluate
11 the use of microsamplers for PFASs and metals.

12 [SLIDE CHANGE]

13 DR. NERISSA WU: So I give this Program update a
14 few times a year, and it often feels like I'm not doing a
15 great job of conveying all the different activities that
16 are going on and how much -- how much multi-tasking is
17 going on among our staff. And this graph does not
18 really -- I'm not sure it helps. It's a schematic of all
19 the steps that a study might involve, but I think it's
20 more helpful actually to look at it this way. And I have
21 this animation, which I apologize if it's not really
22 helping illustrate my point here.

23 [SLIDE CHANGE]

24 DR. NERISSA WU: Let me show it to you this way.
25 I just wanted to convey all the various studies and the

1 types of Program activities that are taking place right
2 now. We are involved with sample collection for CHAIRS
3 and for IPP-8, looking at microsamplers. Our labs are
4 involved with analyzing STEPS samples, as well as CARE-2,
5 and they are preparing to receive samples from CHAIRS and
6 IPP-8.

7 Our statisticians are working on results return
8 and summary stats for the prior round of IPP, looking at
9 PAHs, as well as speciated arsenic for CARE-2. And
10 they're doing further statistical analysis related to
11 CARE, MAMAS, SAPEP, BiomSPHERE, and FRESSCA-Mujeres. And
12 there are multiple panels involved with each of those,
13 which each involve literature search and consideration of
14 what the exposure sources might be. And then, of course,
15 as I mentioned, for all the publications or findings that
16 come out of that work, our communications group is working
17 on fact sheets and other public-facing materials related
18 to all of these studies.

19 [SLIDE CHANGE]

20 DR. NERISSA WU: And then in addition, there are
21 many activities that are related to moving the science of
22 biomonitoring forward. That's not necessarily attached to
23 a particular project. So we have development of
24 laboratory methods, evaluation and standardization of
25 statistical methods, creation of templates for

1 communication materials across the board, review of
2 scientific literature, and assessment of field methods.
3 And all of this is again moving the science of
4 biomonitoring forward, so that we can incorporate it into
5 future biomonitoring studies.

6 [SLIDE CHANGE]

7 DR. NERISSA WU: And none of it gets done without
8 this awesome group of people.

9 [SLIDE CHANGE]

10 DR. NERISSA WU: And that ends what I have for
11 you today.

12 ACTING CHAIR PADULA: So we can take questions
13 from the Panel to start and this is just an opportunity
14 for clarifying questions. There will be a discussion
15 later.

16 PANEL MEMBER MCKONE: Very interesting. I have
17 some questions about the refinery studies. So there's two
18 refineries that are shutting down. You're going to do
19 some samples now, while they're still operating and then
20 after they're closed, right?

21 DR. NERISSA WU: Yes.

22 PANEL MEMBER MCKONE: Is there an opportune -- so
23 I assume the closure will involve remediation. A lot of
24 refineries have a lot of contaminated materials on the
25 site that actually slowly outgas some of the things

1 that -- is there a way then to go back even a couple years
2 later, when they've fully remediated the site and
3 eliminated some of the, like, smoldering residues?

4 DR. NERISSA WU: Good point. Well, I actually
5 will call on Lara or Stephanie to answer that.

6 STEPHANIE JARMUL: Great question, Tom. Well, we
7 are planning on going back next fall to collect additional
8 samples. And depending on funding, we are hoping to add a
9 third year onto the study to come back the following year
10 again to see if any of the levels have changed subsequent.

11 PANEL MEMBER MCKONE: While you're there, I have
12 one more.

13 STEPHANIE JARMUL: Okay.

14 PANEL MEMBER MCKONE: So refineries have
15 continuous emissions, but they're also notorious for
16 flares, which are off-normal and, in theory, they're
17 not -- they don't get permits for flares, because it's a
18 safety -- you know, they have to burn gases. So my
19 understanding is actually some significant emissions that
20 come out of flares, but if you're doing a urine sample,
21 it's just a snapshot. Is there -- I mean, again, has
22 anyone given thought to like a biomarker that would
23 reflect a longer term cumulative exposure? I don't know
24 what that would be. It's the magic exposome.

25 STEPHANIE JARMUL: I mean maybe if we were able

1 to collect blood, but I -- that is not the current plan
2 for the study. You know, metals that we're measuring,
3 they can have lot longer half-lives. Might be indicative
4 of longer term exposures, but for the PAHs and VOCs, what
5 we're measuring, that is more like a cross-sectional point
6 in time.

7 PANEL MEMBER MCKONE: Okay.

8 STEPHANIE JARMUL: Yeah, but I know there was a
9 recent flare-up in one of the refineries in LA I think a
10 few months ago. So hopefully, there's no more, but -- and
11 hopefully we don't cap -- we capture it if there is one,
12 but yeah.

13 PANEL MEMBER MCKONE: Thank you. No, very
14 interesting study.

15 ACTING CHAIR PADULA: Any other questions?

16 I actually have one, if that's okay. I wanted to
17 know -- I imagine this will get discussed maybe more at
18 another time, but the Fresh Air bands, I'm just wondering
19 how they differ from the silicone in terms of what they're
20 measuring or how long they're measuring it.

21 STEPHANIE JARMUL: So the -- and Lara, correct me
22 if I'm wrong, but the Fresh Air wristbands are different,
23 in that it's more like a passive air sampler, so they're
24 not actually, you know, cutting and testing the silicone
25 itself. Yes, it's technically a silicone wristband, but

1 there's actually a little mini-sampling device on it,
2 which is more catered to capture air exposures
3 particularly, instead of air and dermal that the wristband
4 would.

5 ACTING CHAIR PADULA: Thank you.

6 DR. NERISSA WU: You could just stay up here.

7 STEPHANIE JARMUL: I know.

8 ACTING CHAIR PADULA: Jenny -- go ahead please,
9 Jenny.

10 PANEL MEMBER QUINTANA: Hi. I just had a
11 clarifying question about the CHAIRS-LA study. What were
12 the inclusion or exclusion criteria for the participants?

13 STEPHANIE JARMUL: Lara, do you want to take that
14 one more specifics?

15 PANEL MEMBER CUSHING: Sure. They have to be
16 adults, 18 and over. Just because we didn't have the
17 resources to do justice to a children's study, we were
18 pretty limited in resources, so we decided to focus on
19 adults. They have to live within a couple of kilometers
20 of the refinery property boundary. They have to have
21 lived at their -- in the neighborhood for at least a year
22 and have no plans to move in the next year, and they
23 cannot be tobacco smokers. And that was primarily because
24 that would probably, really drive the -- you know, the
25 personal exposure measures if we were to include tobacco

1 smokers. And they had to speak English, Spanish, or
2 Tagalog.

3 PANEL MEMBER QUINTANA: So they couldn't be
4 smokers or live with smokers?

5 PANEL MEMBER CUSHING: They could live with
6 smokers.

7 PANEL MEMBER QUINTANA: They could live with
8 smokers?

9 PANEL MEMBER CUSHING: Yeah, but they couldn't
10 be --

11 PANEL MEMBER QUINTANA: But you would have that
12 information captured, right?

13 PANEL MEMBER CUSHING: Yes.

14 PANEL MEMBER QUINTANA: Okay. Because that might
15 affect things. And also I was just curious if you either
16 ask about this or had a requirement that they not commute
17 a long way, or spend a certain amount of time at home, or
18 was that just something you capture with questionnaires in
19 terms of their commuting behavior or on-road exposures?

20 PANEL MEMBER CUSHING: We capture it in the
21 questionnaire. It's not an exclusion criteria. Part of
22 the -- yeah, I think just mostly for practicality reasons,
23 logistical reasons. So we will have some commuters in the
24 population for sure.

25 PANEL MEMBER QUINTANA: Thank you.

1 STEPHANIE JARMUL: And this is Stephanie. For
2 the urine samples at least, we'll be collecting the first
3 morning voids at least, which should be more indicative of
4 their at-home exposures.

5 PANEL MEMBER QUINTANA: Thank you.

6 ACTING CHAIR PADULA: Okay. Thank you so much,
7 Nerissa.

8 Oh, are there any more questions?

9 Okay. Okay. So -- in the next agenda item, we
10 will be hearing from Ian Tang. Ian Tang is a Research
11 Scientist in the Environmental Health Investigations
12 Branch at CDPH and he will give a presentation on
13 persistent organic pollutants, or POPs, levels in
14 Californians.

15 (Slide presentation).

16 DR. IAN TANG: Thank you for the introduction.
17 I'm Ian, and today I'll be talking about persistent
18 organic pollutant levels, and many of the studies from
19 Biomonitoring California. And specifically, we're trying
20 to get to the question of how we ask, "Shouldn't
21 hexachlorobenzene be decreasing in Californians?" And a
22 version of this presentation was given at the Joint
23 International Societies of Exposure Science and
24 Environmental Epidemiology. And that was in Atlanta
25 earlier this year.

1 [SLIDE CHANGE]

2 DR. IAN TANG: So just to recap, persistent
3 organic pollutants are persistent due to their strong
4 halogenated bonds with carbon. They bioaccumulate due to
5 their lipophilic properties and they're also toxic to
6 multiple organ systems. They include organochlorine
7 pesticides, such as the ones listed here, beta-HCH, DDT,
8 DDE, HCB or hexachlorobenzene, trans-nonachlor,
9 oxychlordane, and also polychlorinated biphenyls.

10 [SLIDE CHANGE]

11 DR. IAN TANG: So widespread use of POPs occurred
12 from the 1940s to the 1970s. HCB was introduced in the
13 19 -- in 1945. And around 1970 -- in the 1970s
14 restrictions began for POPs and HCB was regulated in the
15 United States in 1984.

16 By 2004, POPs were regulated by the Stockholm
17 Convention. And in 2006, Biomonitoring California began
18 and also started conducting studies.

19 [SLIDE CHANGE]

20 DR. IAN TANG: So last year, you all heard that
21 participants in MAMAS 1 had HCB levels around six to eight
22 nanograms per gram, but subsequent MAMAS in 2000 -- 2015
23 and 2016 showed that there was an increase to about above
24 10 nanograms per grams per lipid. And there was also a
25 hundred percent detection frequency for HCB.

1 So we looked at all the other POPs and found that
2 overall they're decreasing with each subsequent MAMAS.
3 And so this led us to do some investigations on HCB, which
4 is one of the most persistent of the persistent organic
5 pollutants and the half-life is about 6 to 11 years,
6 depending on the media. It's also used as a fungicide
7 primarily, but it can also be a byproduct of other
8 chlorinated solvents, such as PCE and TCE.

9 [SLIDE CHANGE]

10 DR. IAN TANG: So given that POPs have been
11 restricted for almost 20 years around the world and over
12 40 years in the United States, I think that we would
13 expect to see a decline in POPs over time. The fact that
14 we don't see this with MAMAS, led us to try and look at
15 this trend across all Biomonitoring California studies.
16 And so the hypothesis that we were looking at is are POPs
17 actually decreasing?

18 [SLIDE CHANGE]

19 DR. IAN TANG: So we combined all of our
20 student -- studies together into one data set and
21 restricted it to women of reproductive age just to match
22 what we had in MAMAS. The total N was 649 women and a
23 third was Hispanic and the mean age was 30 years old. So
24 here's a table of all of the studies that we've conducted
25 where we have POPs data. And luckily, they've been all

1 analyzed by DTSC, so it's all the same lab. And we -- the
2 studies span from 2010 to 2017. And there's some overlap
3 between some studies.

4 So these -- this subset includes mothers,
5 firefighters, Kaiser Permanente members, and also prenatal
6 screening participants across different regions of
7 California.

8 [SLIDE CHANGE]

9 DR. IAN TANG: We analyzed all of the different
10 OCPs, as I mentioned earlier. And we also looked at PCB
11 153, since it's one of the most abundant PCB congeners.
12 To look at the time trends, we used linear regression with
13 the sample year of collection used to predict the
14 log-transformed analyte concentration and we adjusted for
15 age and race/ethnicity.

16 POPs were lipid-normalized. We also set the
17 level of detection to be standardized across all the
18 studies to the highest one and beta coefficients were
19 back-transformed to percent change, and we also looked at
20 Spearman correlation coefficients to examine possible
21 monotonic trends.

22 [SLIDE CHANGE]

23 DR. IAN TANG: So here are the geometric means by
24 year, excluding PBDE -- p,p'-DDE just because the
25 magnitude is large. You can see that HCB here in gold

1 appears to be increasing with time, while all of these
2 other POPs are decreasing or have low concentrations.

3 [SLIDE CHANGE]

4 DR. IAN TANG: And just to show DDE it's also
5 sort of decreasing by time.

6 [SLIDE CHANGE]

7 DR. IAN TANG: And here are the adjusted percent
8 changes of POP concentration by year. I also have the
9 geometric means listed over there. P,p' -DDE has the
10 highest geometric mean of 39.9 nanograms per gram lipid.
11 And HCB has the second highest at 10.5, while all the
12 other POPs are around two to three nanograms per gram.

13 The adjusted percentage change I've highlighted
14 in green, indicates a decreasing percent change. And as
15 you can see all these POPs are decreasing by year, except
16 for hexachlorobenzene. We had crude estimates and they
17 were not very different from these adjusted estimates.

18 [SLIDE CHANGE]

19 DR. IAN TANG: So there are several limitations
20 to this analysis. We used different populations from
21 different geographic regions. And we're really not able
22 to differentiate the effects of study from year. And
23 also, we had a low number of individuals in some years.
24 We conducted several sensitivity analyses. We looked at
25 the trends among men and women, women of all ages. We

1 also excluded individuals of high LODs. And we also used
2 a meta-regression to control for study heterogeneity. We
3 found out these estimates were generally similar to
4 these -- this primary analysis. And in the future, we
5 hope to add one more study, which would hopefully double
6 our sample size and also adjust for more confounders, such
7 breast feeding, pregnancy, and nativity.

8 [SLIDE CHANGE]

9 DR. IAN TANG: So, what's going on? Our studies
10 sort of indicated geometric mean, about 10 nanograms per
11 gram lipid. We compared this to NHANES and found that HCB
12 levels, depending on the population, sort of varies around
13 6 to 12 nanograms per gram. And this table shows the
14 weighted arithmetic mean for NHANES Hispanic females.

15 A subsequent study looking at NHANES cycles from
16 2005 to 2015 cycles found a least square geometric mean
17 range of 8.9 to 9.6 nanograms per gram lipid. And they
18 only found a negative 1.6 percent change for HCP -- HCB
19 across all of these cycles, whereas the other POPs had a
20 percent change of about 8.

21 And just going through this, other populations
22 such as in Belgium, Atlanta, a controlled set for an ALS
23 case control study found that the median or geometric mean
24 was about 7 to 13 nanograms per gram lipid.

25 [SLIDE CHANGE]

1 DR. IAN TANG: So the next question is where are
2 the possible exposures that could be leading to HCB
3 plateauing in humans? HCB has been detected in some of
4 the foods, but the residues tend to be very low. There's
5 a possibility that HCB in the ocean or in the soil is
6 being disrupted and revolatilizing into the atmosphere,
7 leading to re-emissions. There's no -- really no known
8 hazardous waste incinerator or industry that produces HCB
9 in California, but we can't rule out that there are
10 industrial sources from other parts of the world that
11 could be transported through long-range transport.

12 Lastly, HCB can be a byproduct of the other
13 chlorinated solvents. And also, there's been a lot of
14 historical use, such as it's -- it was used as a wood
15 preservative, rubber -- and rubber, aluminum, magnesium
16 and also a dye.

17 [SLIDE CHANGE]

18 DR. IAN TANG: So the literature on HCB in the
19 environment is also compelling. A lot of studies have
20 shown that it's either staying stable or increasing. One
21 of them is shown here where there were air monitors in the
22 North American Great Lakes. And you can see HCB in the
23 bottom right-hand corner seems to be stable, while all the
24 other persistent organic pollutants are decreasing over
25 time. And this timeline was from 1990 to 2015.

1 Another study looked at air monitors comparing
2 HCB levels from 2016 and 2006. And so these circles on
3 the maps represent that ratio of 2016 over 2006, and over
4 68 percent of these sampling sites had a ratio above 1.2.
5 And that large black circle on the map indicates it's in
6 the country of Latvia, and there have been bio -- have
7 been studies in the Baltic Sea also showing that HCB
8 trends were either stable or increasing.

9 [SLIDE CHANGE]

10 DR. IAN TANG: So we have a lot of questions,
11 more so than we have answers. Are HCB concentrations
12 plateauing? Is this because of a new or exist -- existing
13 exposures? Are these a level of concern? And this really
14 shows that HCB can still -- because it's a persistent
15 organic pollutant, it can still be affecting our society,
16 even though it's been regulated for so long. And even if
17 it's being emitted somewhere, it could still end up
18 everywhere.

19 And it also shows how important our surveillance
20 of POPs are given the restrictions. And if anyone has any
21 clues on how to identify possible sources, that would be
22 great.

23 [SLIDE CHANGE]

24 DR. IAN TANG: And so I'd like to acknowledge all
25 the collaborators, funding sources, and our participants

1 over the years.

2 ACTING CHAIR PADULA: Any questions from the
3 Panel?

4 PANEL MEMBER FIEHN: Yeah. That's fascinating or
5 scary, but it's certainly interesting. Now, I understand
6 that your study was focused on females because of the
7 MAMAS, the samples that you had, but what about other
8 people? Have other people also looked in men? There must
9 be other, you know, literature where people try to look at
10 historic trends?

11 DR. IAN TANG: There are a few out there and
12 they've also included men and there's also been a few
13 studies on children as well. And it appears that the
14 trend is similar in terms of HCB staying stable. We've
15 talked to some of our NHANES colleagues and they also see
16 the same trends in both men and women, yeah.

17 PANEL MEMBER FIEHN: Yeah. And a follow-up. I
18 mean hexachlorobenzene is, of course, you know, well, all
19 the carbons are satisfied with chlorine. Is that a
20 physical/chemical reason why maybe it's just much more
21 stable?

22 DR. IAN TANG: It is quite stable. I'm not sure
23 if I can answer any more about that. Does anyone have any
24 thoughts?

25 PANEL MEMBER FIEHN: Okay.

1 PANEL MEMBER MCKONE: It's very stable, but it's
2 also very lipophilic. And there are other compounds that
3 have shown this kind of long term-behavior, the
4 dioxin-like compounds. And you cited Ron Hites. He had
5 actually some really interesting papers about retention of
6 dioxin-type compounds in all kinds of lipid membranes.
7 And I suspect this might be doing the same thing. What
8 happens is it's very lipophilic, it's very persistent. It
9 goes into anything that's lipid and then slowly outgases
10 as the -- I mean, the -- it goes into the atmosphere and
11 then it maintains a constant concentration in the
12 atmosphere, and then the atmosphere feeds the food chain.

13 DR. IAN TANG: Right.

14 PANEL MEMBER MCKONE: I suggest, if you want some
15 insight, you might want to talk to Matt MacLeod at
16 Stockholm University. He actually gave us a
17 presentation -- when did Matt talk to us?

18 AUDIENCE MEMBER: Two years ago?

19 PANEL MEMBER MCKONE: I mean, anyway. He's -- I
20 mean he knows OEHHA, but he's done a lot of work on
21 persistent pollutants, and global transport, and
22 re-emission -- emission re-emission cycles, and how like
23 lipid and soil feeds food chains on a continuing basis.

24 DR. IAN TANG: Right.

25 PANEL MEMBER MCKONE: So you might want to just

1 see if he has some insight about this. He's probably -- I
2 mean, there are others, but I think he's one of the best
3 people out there doing this kind of work.

4 DR. IAN TANG: Thank you so much. We'll reach
5 out.

6 ACTING CHAIR PADULA: And I just want to open it
7 up to a discussion for both of the presentations, both
8 Nerissa's and Ian's -- oh, and sorry. Go ahead first,
9 Lara.

10 PANEL MEMBER CUSHING: Thanks. Yeah. You
11 mentioned wanting to control for nativity in some of the
12 additional analysis you'd like to do. And I was just
13 curious, do you know how -- what the proportion of
14 immigrants is in your pooled sample and how it might have
15 changed over time? I'm not sure if that could be a
16 factor, but I know, you know, the year when HCB was banned
17 in different countries, you know, differed.

18 DR. IAN TANG: Um-hmm, right.

19 PANEL MEMBER CUSHING: So I was just wondering if
20 you had taken a look at the distribution of immigrants
21 over time in the pooled sample?

22 DR. IAN TANG: Yeah. That's an excellent
23 question. I can't -- I don't know what the distribution
24 on the top of my head is. We're still in the process of
25 harmonizing all this data in terms of across all the

1 studies. However, some of these studies are -- for
2 instance, in some of the BEST studies, are in the Central
3 Valley, and a lot of those individuals are immigrants.
4 And so I would -- I think it's a little bit different for
5 each study, but, yeah, we'll definitely take a look at the
6 distribution and try to understand it a little bit better.

7 ACTING CHAIR PADULA: Go ahead, Jenny.

8 PANEL MEMBER QUINTANA: Hi. Thank you. And I
9 did have the same question as Lara and either country of
10 origin or where they were born, because I think also their
11 mother's body burden might affect the children. But
12 specifically, I'm wondering, did you have data on BMI or
13 obesity levels? I'm -- I know that I tried look at the
14 literature on obesity and POPs, and it's confusing. It's
15 not a straightforward story to me at least. I mean, I was
16 trying to wade through it.

17 And I guess a related question for the Panel
18 looking forward, I'm kind of curious how Ozempic or those
19 kind of drugs might affect our biomonitoring? I know that
20 rapid weight loss, you know, does tend to flood the body
21 with some of the stored pollutants. And so just looking
22 forward, maybe that would be something to look at as well.
23 So that's a bunch of questions in one. Thank you.

24 DR. IAN TANG: That is a really interesting point
25 about Ozempic and how that might sort of remobilize POPs,

1 and then think it's something we can capture in early --
2 in surveys. But, yeah, in terms of your previous question
3 on BMI, some of our studies, we do have BMI. However,
4 because the most recent studies that we have is based on
5 MAMAS, and they are coming from the Biobank, they're
6 prenatal screen samples, we don't necessarily have good
7 data on everyone for that.

8 So it is something that we're considered --
9 considering. Maybe we can run a sensitivity analysis
10 subsetting it among individuals where we do have BMI.
11 But, yes, an important point. Thank you.

12 PANEL MEMBER QUINTANA: Thank you.

13 ACTING CHAIR PADULA: Go ahead, please. And
14 please introduce yourself, if you could.

15 DR. MARTHA SANDY: Sure. Martha Sandy, OEHHA.

16 I wonder, Ian, if you could go back and show us,
17 you had a slide on your sensitivity analyses and pulling
18 in all men and women. And then maybe one of the slides
19 looking at other POPs and just read for us what they were,
20 because to get to Dr. McKone's point and the question
21 about what's special about hexachlorobenzene. Some of the
22 other POPs I think are also fully chlorinated, or
23 brominated, or we could think about PCBs, and PBDEs, and
24 things like that.

25 ACTING CHAIR PADULA: Would you go back?

1 DR. IAN TANG: So it was the sensitivity analyses
2 and then maybe this slide?

3 DR. MARTHA SANDY: The -- I think you had some
4 nice graphs time trends too.

5 DR. IAN TANG: Oh, I see.

6 DR. MARTHA SANDY: But the sensitivity analysis
7 with the -- all the different groups, you tried -- because
8 you were looking at women of child-bearing age, and then
9 you looked more broadly.

10 DR. IAN TANG: Right.

11 DR. MARTHA SANDY: To go over that again just to
12 pull that up.

13 DR. IAN TANG: I see. Okay. So I have the
14 results of those, if that's --

15 DR. MARTHA SANDY: Or just to remind us what you
16 did.

17 DR. IAN TANG: Yeah. Okay. Sure. Yeah, for the
18 sensitivity analyses, we combined both men and women
19 across all of our different studies together. We also --
20 because in our -- in this -- in the analyses showed here,
21 we also restricted to women of reproductive age. We
22 expanded it out to all women. And also because the MAMAS
23 had different -- they had higher LODs, because they were
24 using banked serums, the LOD is a little bit higher. And
25 so, if we were to sort of model it, it would change the

1 shape of the regression. So we wanted to restrict and
2 standardize the LODs across all of the different -- all
3 the different studies and also see what happens if we just
4 excluded the women who had the highest LODs to see if that
5 was biasing the results or the trend that we're seeing.

6 With meta-regression, we also looked at it -- the
7 geometric mean by studies. And so this is a way to
8 control for the study heterogeneity that we have, so it's
9 expanding. It's coming from the individual level back out
10 to the population level. And so the magnitudes are much
11 more different, they're much larger, and a little bit more
12 unstable. But I think that that's something we would
13 expect to see when we're able to account for this study
14 variability.

15 Does that answer your question?

16 DR. MARTHA SANDY: Yes.

17 DR. IAN TANG: Okay. Yes. Hi.

18 PANEL MEMBER SUÁREZ: José Suárez, UC San Diego.

19 Thank you all for the presentation. I just had a
20 couple of questions about your -- the newer methodology
21 for calculating the percent change --

22 DR. IAN TANG: Um-hmm.

23 PANEL MEMBER SUÁREZ: -- if I can dive in a
24 little bit deeper with that.

25 DR. IAN TANG: Yeah. So we calculated the beta

1 and this was using the log-transformed concentrations.
2 And so we back-calculated it using exponentiation of the
3 beta minus 1 times 100.

4 PANEL MEMBER SUÁREZ: I guess my question is, so
5 if we -- if you wouldn't mind showing us the -- let me see
6 the slide -- let's see, I think it's slide number 8 is the
7 one that lets us --

8 DR. IAN TANG: Okay.

9 PANEL MEMBER SUÁREZ: -- take a look at things a
10 little bit, right?

11 So we're looking at the trends there, excluding
12 DDE, because the magnitudes --

13 DR. IAN TANG: Um-hmm.

14 PANEL MEMBER SUÁREZ: -- are way higher. That's
15 the next chart. Overall, from your analyses, you're
16 showing that they were decreasing, except for
17 hexachlorobenzene, right?

18 DR. IAN TANG: Um-hmm.

19 PANEL MEMBER SUÁREZ: If we're looking at the
20 figure here though however, it's kind of hard to look at
21 that, but if you -- it's very hard to look, but
22 oxychlordane and p,p'-DDT, which are the two lines in the
23 bottom --

24 DR. IAN TANG: Um-hmm.

25 PANEL MEMBER SUÁREZ: -- they actually seem to be

1 increasing over time once you look very carefully at that.

2 DR. IAN TANG: Yeah.

3 PANEL MEMBER SUÁREZ: And part of where I'm going
4 to with this is, so you calculated the percent change from
5 2010 through 2016, right, that's the percent change?

6 DR. IAN TANG: Yes. Yeah.

7 PANEL MEMBER SUÁREZ: And so part of the concern
8 here too is that in 2010, there are only 34 participants
9 that have a measurement, right?

10 DR. IAN TANG: Yeah.

11 PANEL MEMBER SUÁREZ: So how much you can
12 generalize or how stable you think those concentrations
13 are, are probably lower than once you start going towards
14 2015-2016, where you reached 236 and 206, right?

15 DR. IAN TANG: Um-hmm.

16 PANEL MEMBER SUÁREZ: And the other part worth
17 taking a look at too is when you're calculating percent
18 change, especially with variables that are highly skewed,
19 right? So these -- I presume that are pretty skewed, as
20 they tend to be, right? Then, when they're in the very
21 low concentrations, even tiny changes can result in very
22 substantial percent change. So you must have had to, at
23 some point, restrict outliers to be able to come up with
24 numbers that are not, you know, 300 percent decreases, 500
25 percent decreases.

1 DR. IAN TANG: Uh-huh.

2 PANEL MEMBER SUÁREZ: So, in other words, I would
3 suggest also looking at the absolute difference --

4 DR. IAN TANG: Sure.

5 PANEL MEMBER SUÁREZ: -- by the time period. And
6 then something worth considering it, is it worth it to
7 compare back to a sample with only 34 observations in it
8 or can you start maybe grouping them and say, well, the
9 2020 and the 2012 one, you group all of those as your
10 baseline category.

11 DR. IAN TANG: I see.

12 PANEL MEMBER SUÁREZ: And from there, you can
13 start doing the comparisons and maybe you can start
14 getting a little more stability with your -- with the
15 estimates.

16 DR. IAN TANG: Right. Yeah. I think that's a
17 great point on the starting value being N equals 34. We
18 are trying to get an additional study around the same
19 time, specifically the California Teachers Study, which
20 will increase our sample size up I think by a thousand.
21 So that hopefully should address some of the concerns
22 there. But I do take your point. I think the idea of
23 combining the -- like earlier studies together to gain a
24 little bit more numbers is a good idea. And yeah, it's an
25 -- it's an interesting point trying to think of what a --

1 what the percent change would represent, because I think
2 we were thinking that the slight increase over time that
3 we see could be because of the level of detection
4 differences. But, yeah, it's -- we'll look into it some
5 more. Yeah. Thank you. This is a lot of feedback --
6 good feedback.

7 PANEL MEMBER SUÁREZ: And technically, this
8 should coincide, right?

9 DR. IAN TANG: Um-hmm.

10 PANEL MEMBER SUÁREZ: So even with these -- it's
11 hard to see it in this figure.

12 DR. IAN TANG: Um-hmm.

13 PANEL MEMBER SUÁREZ: I had to like really zoom
14 in quite close to see that there's slight increases in
15 those two, right?

16 DR. IAN TANG: Um-hmm. Yes.

17 PANEL MEMBER SUÁREZ: So of -- I think just some
18 methodological adjustments there --

19 DR. IAN TANG: Sure.

20 PANEL MEMBER SUÁREZ: -- I think might be good.

21 DR. IAN TANG: Okay.

22 PANEL MEMBER SUÁREZ: But look at the absolute as
23 well.

24 DR. IAN TANG: Yeah.

25 PANEL MEMBER SUÁREZ: -- to see if that starts

1 matching up a little bit closer to this.

2 DR. IAN TANG: Okay. Yeah, thank you so much.

3 ACTING CHAIR PADULA: Any additional questions?

4 I just have one additional follow-up question.

5 It sounds like the upcoming subanalyses by parity and
6 things will be, of course, interesting. I was also
7 wondering, since some of those women were -- some of the
8 cohorts were pregnant and some of them were not, have
9 you -- have you lumped the pregnant and non-pregnant ones
10 yet or -- I mean, I know most of them are MAMAS, but
11 there's one other.

12 DR. IAN TANG: Yeah. We've lumped them all
13 together in this case, yeah. For example, in -- women of
14 reproductive age who were not pregnant would be included
15 in this, yes. Yeah.

16 PANEL MEMBER SUÁREZ: It's fascinating and I have
17 kind of a follow-up question of that, which is breast
18 feeding --

19 DR. IAN TANG: Uh-huh.

20 PANEL MEMBER SUÁREZ: -- do you happen to have
21 information about breast feeding duration or breast
22 feeding or not, given that there's a good amount of data
23 showing that a lot of these POPs can be excreted by breast
24 milk?

25 DR. IAN TANG: Exactly. Yes. So that is data

1 that we have collected and we've harmonized. However,
2 they're not available for everyone in MAMAS, and also some
3 of the clinical data for some of our cohorts, we don't
4 have that data. So if we were to actually do this
5 analysis, adjusting for more confounders, then we would
6 expect the sample size to decrease just because of the
7 data availability.

8 PANEL MEMBER SUÁREZ: Yeah, I'd be very curious
9 though I wonder -- I wonder how many of these studies -- I
10 mean, it's not a huge sample size --

11 DR. IAN TANG: Yeah.

12 PANEL MEMBER SUÁREZ: -- but if there's -- I'll
13 just be personally very interested in seeing duration of
14 breast feeding and how that correlates.

15 DR. IAN TANG: Yeah. Definitely, yeah. Yeah, we
16 -- well we have, yeah, some of that data. So it's very
17 exciting. We're so -- I think we're waiting for the CTS
18 data to come in and then see how we can reanalyze the
19 data.

20 There -- at ISEE/ISES, there was also a couple of
21 folks who wanted to collaborate and maybe add in more
22 cohorts. We've been also considering that as well just to
23 see if we can just gain more power and more people in each
24 year. So we're still thinking about how to do that, since
25 there's like different labs, and different techniques, and

1 different populations and stuff.

2 DINA DOBRACA: Can I ask the SGP a question?

3 ACTING CHAIR PADULA: Yes.

4 Who are you?

5 DINA DOBRACA: Oh, my name is Dina Dobraca. I'm
6 a Research Scientist with the California Department of
7 Public Health. I was wondering there was one PCB used in
8 this analysis as like the -- expected to be most detected,
9 persistent PCB, but to get to the point that was brought
10 up previously about how chlorinated HCB is, are there any
11 other PCBs or dioxin-like compounds that one would like to
12 see, if we could get that data?

13 PANEL MEMBER SUÁREZ: Is the question going
14 towards the -- well, I think the underlying part --

15 AALEKHYA REDDAM: Sorry. Can you identify
16 yourself for the transcript?

17 PANEL MEMBER SUÁREZ: Oh, sure. José Suárez. So
18 part of this too is HCB has a substantially longer
19 half-life than the other ones -- than most of them, not
20 all of them. It's not the one that has the longest --
21 probably of the ones you measured, the longest, but among
22 the longest half-lives, right?

23 So I wonder if you're -- do you think your
24 question goes in that direction? Should we -- are there
25 other more persistent pesticides or, excuse me, chemicals

1 that should be measured that were very prevalent at some
2 point and maybe we should be monitoring that a little bit
3 better?

4 DINA DOBRACA: Yeah. I'm basically asking the
5 SGP for the recommendation of if we have the data or could
6 get the data, what would they recommend?

7 PANEL MEMBER MCKONE: Can I follow-up? Tom
8 McKone, Panel. They have to be careful. It isn't just
9 persistent. And this is where it helps to talk to
10 somebody who does fate modeling or fate analysis, because
11 it isn't just the half-life. It is the vapor pressure,
12 the solubility, and the lipid -- I mean, the water
13 solubility, air solubility, vapor pressure, and how these
14 play together and where the reaction takes place. So if
15 something is -- degrades in water, but is really not
16 soluble. It's not in water. It's how much gets into --
17 so again, you can't really understand this, because we've
18 got about at least six different parameters that you have
19 to put together.

20 And that's why I say people like Matt MacLeod who
21 do this know how to take this. And they actually -- he's
22 run all these chemicals through -- they're -- how to rank
23 them in terms of their overall persistence, based not just
24 on their persistence in one medium, but in the total
25 environment. And that relates to how they make their way

1 around the environment. Like some things go into sediment
2 and get buried and other things go into sediment and just
3 sit there and slowly go into the water column. And as the
4 concentration in the water column goes down, they go into
5 the atmosphere and then get circulated.

6 So some get buried, some get circulated and you
7 don't know that without really running it through these
8 sorts of fate analyses. And then you could start seeing
9 how these substances all compare to each other. And
10 again, it's already been done. You know, I think you just
11 call somebody who's been involved in persistent pollutants
12 for 10, 15 years, and they'll say, oh, yeah, here's the
13 paper. We ranked them all in terms of their global
14 persistence and their likelihood they'll end up in the
15 food chain, and their likelihood they end up in human
16 lipids.

17 ACTING CHAIR PADULA: Any further questions?

18 STEPHANIE JARMUL: Just a reminder that they can
19 ask questions on the Program update as well, in case there
20 are any.

21 ACTING CHAIR PADULA: Right.

22 STEPHANIE JARMUL: Nerissa is very happy I said
23 that.

24 (Laughter).

25 PANEL MEMBER DURRANI: Hi. Timur Durrani. This

1 is I guess for both of you. I've heard three different
2 labs now, it's sounds like, Environmental Health Lab,
3 Environmental Chemistry, and DTSC. And Nerissa, it
4 sounded like part of the support role is to develop, come
5 up with a lab's development and so forth. So can you talk
6 a little bit about how that goes about and how you choose
7 which lab, and which analytes go where, and that kind of
8 thing?

9 DR. NERISSA WU: Sure. There are two labs as
10 part of the Biomonitoring Program. And one is the
11 Environmental Health Lab at CDPH and they generally
12 measure metals, and then the urinary nonpersistent
13 chemicals, like PAHs and VOCs. And then our persistent
14 organic pollutants and PFASs are measured by the
15 Environmental Chemistry Lab. That's over at DTSC.

16 Now, one of the pressures on the Program is there
17 are all these emerging chemicals and trying to keep up
18 with methods or expand our PFASs methods -- or PFAS method
19 to include more of these emerging PFASs, it is quite a
20 challenge for the lab. It's a very long process to go
21 through that method development. So sometimes what we'll
22 do, as I mentioned Amina Salamova's lab, is we'll work
23 with an academic or private lab that's working on a new
24 method. We might see in one of our pilot studies what's
25 coming up that we want to consider and then try to

1 incorporate that method into one of the labs. In the case
2 of PFASs, it would be over at DTSC. But it's something we
3 have to consider carefully, because the -- just the
4 resources and time that go into method development are
5 considerable.

6 I don't know. Maybe one of the lab folks is
7 online wants to address that.

8 ACTING CHAIR PADULA: Go ahead, Lara.

9 PANEL MEMBER CUSHING: Yeah. I had kind of a
10 related question, which is I was just wondering if this
11 would be more Nerissa or maybe you'll be presenting on
12 this at a future meeting about the IPPs, and like the --
13 because I know there was -- there's one about PFAS, but
14 also PAHs and VOCs. So I was just kind of curious where
15 those are, and how they went or are going, and what may be
16 planned?

17 DR. NERISSA WU: So the IPP, the Intra-Program
18 Pilot, it's our method development. It's beyond
19 laboratory methods. It's really just trials of different
20 laboratory or field processes that we want to try out on
21 sort of an internal group, before we use it in a general
22 biomonitoring study. So for example, in the past we
23 looked at QACs with -- also with an external lab to see if
24 it was something that we would consider bringing into a
25 biomonitoring study. The PAHs were -- it was an

1 expansion -- or I guess an improvement of the method.

2 And so, again a demonstration that the data were
3 usable, that we saw detection levels that we would expect
4 to see. And it's an opportunity for us to kind of do a
5 dress rehearsal and try out the method and make sure that
6 the data is usable or useful before we promise it to
7 external partners.

8 The last one, so PAHs we did run, and we're
9 actually about to return those results to the
10 participants. And I guess we -- we're -- as part of our
11 consideration of 2026 topics, I mean, this might be
12 something that comes up, we could talk about them as a
13 body of work or we could have a discussion about why we
14 chose to test a new method and what -- kind of what the
15 outcome of that is. And this is particularly true for
16 something like the microsampling devices, which I think
17 everyone is really interested in hearing about. We'll be
18 doing an assessment of both, you know, are we -- are there
19 differences in capillary blood versus venal samples, how
20 do the PFAS and metals results look between those two
21 sampling techniques, but also what's the acceptability
22 among participants? Do they -- do they like having
23 samples collected in that way? Are they more or less
24 painful than venipuncture?

25 So there -- I think there will be a lot of

1 results that come out of the next round of IPP that we'd
2 be happy to share with you. But I think that would be a
3 good addition to our discussion in 20 -- for the 2026
4 topics about the things we would like to see.

5 DR. KATHLEEN ATTFIELD: And it's a small point.
6 I'm Kathleen Attfield, a Research Scientist Supervisor
7 over at EHIB. Just to point out, of course, that these
8 IPPs are always small. It's like less than 40 people, so
9 we don't try to use that data as sort of understanding
10 anything about the California population per se. It's
11 more about method development, and testing, and field
12 implementation testing.

13 ACTING CHAIR PADULA: Okay. If there are no
14 other questions, I want to just thank Nerissa and Ian
15 again for a great presentation, and we will take a
16 10-minute break and return at 2:20. Thanks so much.

17 DR. IAN TANG: Thank you all for your comments.

18 (Off record: 2:10 p.m.)

19 (Thereupon a recess was taken.)

20 (On record: 2:20 p.m.)

21 ACTING CHAIR PADULA: In the next agenda item, we
22 will be hearing from several collaborators on the
23 FRESSCA-Mujeres project. Ileana Navarro, Policy Associate
24 at the Central California Environmental Justice Network;
25 Dr. Mohammad Heidarinejad, an Assistant Professor in the

1 Department of Civil, Architectural, and Environmental
2 Engineering at the Illinois Institute of Technology, and
3 Stephanie Jarmul, Chief of the Safer Alternatives
4 Assessment and Biomonitoring Section at OEHHA.

5 So today, they will give a joint presentation on
6 the results and impacts of the FRESSCA-Mujeres study.

7 (Slide presentation).

8 STEPHANIE JARMUL: Thank you, Amy. I'll just
9 briefly give an overview. Is this going to work?

10 [SLIDE CHANGE]

11 STEPHANIE JARMUL: There we go. So Ileana is
12 going to be giving a study background. Ileana is
13 attending online, so there she is. And then Mohammad will
14 be providing an intervention analysis for the PM data. I
15 will be giving the biomonitoring results, and then I'll
16 pass it back over to Ileana who will discuss the FRESSCA
17 community impacts and perspectives, and some next steps
18 for the project. And with that, I'll turn it over to
19 Ileana.

20 [SLIDE CHANGE]

21 ILEANA NAVARRO: Hi, everyone. My name is Ileana
22 with the Central California Environmental Justice Network,
23 or CCEJN, as Stephanie mentioned. Thank you so much for
24 having me today. I'm super excited to share about the
25 study and share those community impacts that we feel were

1 very impactful.

2 To start off, agricultural workers in
3 California's San Joaquin Valley, they face this critical
4 health challenge of spending super long hours working
5 outdoors and then having to return to home without the
6 proper air filtration. And this has left them
7 disproportionately exposed to wildfire smoke.

8 And these exposures include wildfires, but also
9 dust and smoke from agricultural fields and emissions from
10 oil and gas operations. And I have here some photos taken
11 from community members of their -- of their exposures.
12 Many low-income families here also rely on evaporative
13 coolers, or swamp coolers, which are the more affordable
14 alternatives to air conditioners. And these systems they
15 pull in massive amounts of unfiltered outdoor air, and
16 then when the wildfires smoke -- when there's wildfires,
17 the smoke, with the extreme heat, hit simultaneously and
18 these homes become super hazardous. And this is what led
19 us to launching the FRESSCA-Mujeres and FRESSCA Project.

20 Next slide.

21 [SLIDE CHANGE]

22 ILEANA NAVARRO: I'm going to be sharing with you
23 all some videos from the community members that had the
24 opportunity to record their experience through a community
25 workshop led by Story Center. And this here is Erika's

1 story.

2 (Thereupon a video was played.)

3 ILEANA NAVARRO: We're going to pause it really
4 quick right here just to continue talking more about the
5 study, but we'll come back to this video at the end.

6 Next slide.

7 [SLIDE CHANGE]

8 ILEANA NAVARRO: The goal of FRESSCA -- of the
9 FRESSCA Project was to address this need by developing an
10 affordable filtration intervention for homes with swamp
11 coolers. We also then built on this project and launched
12 FRESSCA-Mujeres, which aimed to evaluate the effectiveness
13 of the air filtration interventions at reducing in-home
14 exposures and learn more about female agriculture workers'
15 exposures to air pollution specifically in the Valley.
16 And we recruited from Fresno, Kings, and Kern counties.

17 [SLIDE CHANGE]

18 ILEANA NAVARRO: This slide was presented by Jeff
19 Wagner at last November's meeting, but just as a brief
20 reminder, we have three funding sources and many
21 interdisciplinary partners on the full study team, which
22 included folks from -- folks involved in FRESSCA and
23 FRESSCA-Mujeres.

24 [SLIDE CHANGE]

25 ILEANA NAVARRO: And then before Mohammad and

Stephanie go into details about the results, we wanted to provide a brief overview of the study components. The FRESSCA Pilot Project was conducted in 2022. And during that phase, we enrolled 25 homes from Kern and Fresno counties. We developed indoor and outdoor PM monitors and different types of filtration interventions in these homes, and participants also completed questionnaires.

Then in 2023, we launched FRESSCA-Mujeres. And then during this phase, we enrolled about 50 female agricultural workers from Kern, Kings, and Fresno counties. We installed portable air cleaners in all the homes and swamp cooler filters on half of the homes. It was designed this way, so that we can ensure that all participants had some sort of filtration in case of a wildfire event. And then to characterize exposures and evaluate the intervention, we measured air pollutant levels inside and outside of the homes, collected participant's urine to measure exposure biomarkers, and conducted questionnaires.

And now, I'll hand it over to Mohammad to provide details on the filtration intervention analysis.

Thank you.

[SLIDE CHANGE]

DR. MOHAMMAD HEIDARINEJAD: Thanks, Ileana.

Thanks to Stephanie. My name is Mohammad Heidarinejad,

1 I'm an Associate Professor at Illinois Tech. I'm excited
2 to be here to present on behalf of the FRESSCA team.
3 Looking into the FRESSCA, we had three different phases.

4 One phase was laboratory testing, pilot
5 intervention, and the full intervention. The laboratory
6 and the pilot was conducted in 2022. And the full
7 intervention was in 2023. Before looking into the lab
8 testing, I want to explain a little bit what the
9 difference between the pilot year and the full
10 intervention.

11 So we used the pilot year to learn more about the
12 lessons learned that we deployed for the full
13 intervention. So technically the number of homes
14 increased significantly from the pilot year to the full
15 intervention. They come -- the counties are almost
16 identical. And in terms of the intervention, we usually
17 deploy them in June, July and retrieve the interventions
18 in October. And the goal was to make sure if there is a
19 wildfire, we can capture the intervention for the air
20 cleaning during that time.

21 One of the things we learned for the pilot year
22 was if you look at the intervention types in the pilot
23 year, we had so many different portable air cleaners. We
24 decided to limit those numbers making sure all the
25 portable air cleaners are HEPA filters. Also, we want to

1 make sure during the full intervention all the homes have
2 means of air cleaning, meaning all the homes we call it
3 single invention, at least had a portable air cleaner.
4 And half of the other homes, they had double
5 interventions, meaning in addition to their portable air
6 cleaners, we were also like filtering the swamp coolers to
7 make sure the outdoor air coming in is filtered.

8 One of the other things we learned during the
9 pilot year, making sure that we can focus and
10 understanding the usage of the portable air cleaners and
11 the swamp coolers. So all the homes almost, if possible,
12 during the full intervention, they had plug load logger,
13 so they could see if they're operating the device, if
14 they're operating at low, medium, or high speed.

15 The other thing we learned during the pilot year,
16 making sure having some sort of memory in the monitors for
17 indoor air quality and outdoor air quality could increase
18 the capture rate.

19 [SLIDE CHANGE]

20 DR. MOHAMMAD HEIDARINEJAD: So now, we want to
21 look at a little bit before getting to the full
22 intervention, the year, looking at the results. We want
23 to learn about what is the focus we did in the laboratory
24 to develop the filtration solution for the swamp coolers.

25 So the team made a visual survey of the homes and

1 they looked at the homes, their swamp coolers in terms of
2 size, dimensions, and their location. Eighty-five of them,
3 we called them horizontal-flow, meaning they were going
4 through the walls or the windows and they were not on the
5 roof. And so we decided to focus on that because of the
6 safety, also the predominance of horizontal swamp coolers.
7 As you can see in the bottom, there are four figures. The
8 three on the left-hand side show these are usually cubic,
9 but also you have some sort of swamp coolers, they may
10 have a little bit different basic dimensions, mostly two
11 narrow side and then maybe one dominant side there. So we
12 looked at different filter types. We'll talk about it
13 more. And then ultimately we focused on these to make
14 sure that --

15 [SLIDE CHANGE]

16 DR. MOHAMMAD HEIDARINEJAD: -- we can develop the
17 solution for that.

18 In the laboratory, when we -- the team made this
19 survey, they identified seven manufacturers for the swamp
20 coolers in the area. We picked three of them that they
21 were more common. And we acquired them in the lab. As
22 you can see in the image on the right-hand side, a few
23 different ways of mounting the filters.

24 These swamp coolers were tested. Even in the
25 bottom right-hand side, you can see that we build the

1 enclosure of plenum type on it. We decided to abandon
2 that, because it takes a lot of time to -- to do that.
3 The overarching goals for this laboratory testing and the
4 making sure the filtration for the swamp cooler was making
5 sure the media could withstand the wet surfaces, because
6 these swamp coolers have wet surfaces, making sure that
7 it's not restrictive in terms of the flow. So we kind of
8 have a 20 percent limit in terms of the flow that would be
9 reduced.

10 Also, it should be cost effective and the owners
11 should be able to acquire the pieces needed to put it
12 together, so meaning limited training or no training is
13 needed for that. Also, we want to make sure this solution
14 is not permanent. It's only during the wildfire season.
15 So as you can see in the results, which are these are good
16 for a few weeks.

17 | [SLIDE CHANGE]

18 DR. MOHAMMAD HEIDARINEJAD: With that, we did the
19 testing. So if you're looking at the figure here, we have
20 two figures. The left-hand side shows two type of the
21 coolers. They have centrifugal fans and the right-hand
22 side has the axial fan. The vertical axis shows the flow
23 rate. So if you look at the number, usually multiplied by
24 0.6, you get it in CFM. So if you are looking at it,
25 maximum gets to about 3,000 CFM. The horizontal axis

1 shows the pressure drop in these coolers.

2 So we did testing blocking different side of the
3 cooler, as you can see the dashed line here. So you get
4 system -- should I repeat it from the beginning?

5 (Laughter).

6 DR. MOHAMMAD HEIDARINEJAD: So one thing we
7 realized here, if you're looking at it, so like the dashed
8 lined shows when we did the testing of blocking different
9 side of the cooler, and we get the system curve for that.
10 The goal was to make sure it's only 20 percent restricted
11 in terms of the flow rate. So if you are looking at the
12 line here for the bottom basically line, that's the
13 cutoff, in terms of the pressure drop. And this one is
14 for the upper line. You are looking at a few different
15 combination of filters being deployed here. So we looked
16 MERV 13, MERV 11, even like some sort of thin shapes being
17 used in terms of the filtration. Also, different because
18 of the filters are tested. Almost all the filters you see
19 on the left-hand side of this, they meet the criteria
20 here.

21 For the axial fan, that like shape, it has like
22 two narrow sides. Unfortunately, a lot of the filter
23 solutions didn't work, but we ended up finding some sort
24 of innovative way in the field to deploy filters for those
25 coolers.

1 [SLIDE CHANGE]

2 DR. MOHAMMAD HEIDARINEJAD: Now, looking in terms
3 of the filtration efficiency, basically removal efficiency
4 of these filters. If we are looking at -- let's say we
5 just focus on the left-hand side looking at this arrow,
6 like meaning if no filter is being used for these swamp
7 coolers, these pads are usually good for more than 5
8 micrometers. But less than that, when we usually have the
9 widest part, they are not good so meaning it -- we need to
10 have some sort of filtration for the swamp coolers. And
11 usually, we know these wildfires, it's important to focus
12 on 0.3 to 0.5 micrometer. So as you could see here, about
13 like, you know, 50, 60 percent or more than that removal
14 efficiency could be achieved with this filter.

15 Similar patterns could be seen for like different
16 cooler types. The left-hand side, these are the
17 laboratory, you know, filters. We selected these in
18 coordination and with the manufacturers, also, talking to
19 the advisory group. The right-hand side shows the filters
20 that they were locally available and they were tested.
21 There are a little bit more that if we have time, we can
22 come back and explain some of those.

23 [SLIDE CHANGE]

24 DR. MOHAMMAD HEIDARINEJAD: So now, we have the
25 solution for the filtration for the swamp coolers. So

1 getting to the pilot and full intervention year. So we
2 installed PurpleAir to monitor indoor in all the homes in
3 terms of their air quality and eight nearby outdoor
4 stations. Also to make sure that we can make
5 determination, we co-locate these PurpleAirs for
6 calibration. So we calibrate them with respect to others.
7 And we ended up getting the calibration factors for each
8 of these monitors.

9 [SLIDE CHANGE]

10 DR. MOHAMMAD HEIDARINEJAD: One of the things I
11 mentioned in the pilot year, we learned if you solely rely
12 on the WiFi, the capture rate may not be sufficient. So
13 if you're looking at the figure here, these are 46
14 monitors and the vertical access here shows the capture
15 rate. These are different homes and different monitors
16 that we had. We still had a few with the WiFi on the
17 left-hand side, but most of them they had on-site storage.
18 So as you could see, the capture rate increased
19 significantly when you have the on-site memory. In case
20 the WiFi get disconnected, you still have the on-site
21 storage to collect the data. That was one of the lessons
22 learned that we used for the full intervention.

23 [SLIDE CHANGE]

24 DR. MOHAMMAD HEIDARINEJAD: Now, let's look at
25 more detail in terms of the field intervention. We call

1 it single intervention, meaning all the homes they had a
2 portable HEPA air cleaner. So if there's a wildfire, at
3 least they could use these portable air cleaners. And for
4 the other half of the homes, we call it double
5 intervention, meaning both the portable air cleaner and
6 the swamp cooler is also filtered air. So like any
7 outdoor air come into this space, it's being filtered
8 through these swamp coolers. So we'll see the results of
9 that in the next few slides there. So we call this one
10 double intervention versus single intervention.

11 Before looking at some time series data, let's
12 look at some spot measurements. So one of the goals was
13 to make sure it's not restricted in terms of the flow
14 rate. So we kind of have the 20 percent limit there. So
15 looking in July when the filters were deployed versus
16 October, we call it new versus used. So as you could see
17 over time, when the filters were removed or retrieved, so
18 the flow rate reduction increased more from 13 to 17
19 percent, we are still within the 20 percent range that we
20 have. So indicating that the solutions that were deployed
21 they meet the criteria that we have for the design.

22 [SLIDE CHANGE]

23 DR. MOHAMMAD HEIDARINEJAD: Now, the next step is
24 before again looking at time series, let's look at another
25 spot measurements. Important part is the particulate

1 removal efficiency, meaning how effective these filters
2 and the solutions are, so looking at new versus used,
3 meaning July versus October when the filters were
4 retrieved. So as you could see for different
5 size-resolved bins, from 0.3 to 1 micrometer. So over
6 time, the particulate removal efficiency dropped from 49
7 percent to 36 percent. And as expected for like the
8 filters, as you go up, the filtration efficiency goes up,
9 but also again decrease over time significantly,
10 indicating that the solution is good, but only works for a
11 few weeks possibly.

12 Now, we want to look at if really these double
13 intervention solution work. So you'll see a box plot
14 here. We call it constrained PM indoor and outdoor ratio,
15 the vertical axis. So it goes from 0 to 1. And the
16 horizontal axis shows two groups. The first group here is
17 the double intervention, meaning homes with PAC, portable
18 air cleaners, and the EC filter. The right-hand side
19 shows only single intervention, meaning the portable air
20 cleaners being used.

21 So one of the things you are seeing here, the
22 median for the I/O ratio is slightly increased when the
23 ECs become on, like these dark blue from 57 to 63 percent,
24 meaning that slightly the outdoor origin particulate
25 matters are coming to the space, but the filters are still

1 able to filter most of that. But when we are looking at
2 the homes with only PAC filtration, that number increased
3 significantly from 55 percent to 78 percent, meaning that
4 those outdoor air coming from the coolers, they are not
5 filtered, and the portable air cleaner is not able to
6 catch up with that. So indicating the double intervention
7 is what we are looking at it for here as a promising
8 solution.

9 [SLIDE CHANGE]

10 DR. MOHAMMAD HEIDARINEJAD: Looking at the same
11 thing we saw before, like, you know, new versus used, like
12 the first three weeks and also the last three weeks of the
13 deployment. So you see the same thing here, the I/O ratio
14 for the first three weeks versus the last three weeks. So
15 the first three weeks, we are not seeing noticeable
16 changeover in terms of I/O when the filters are deployed.

17 But over time, as you could see, that I/O ratio
18 increased from 55 to 69 percent, meaning the filters are
19 not able to catch up over time a little bit more than what
20 you see at the beginning. There are several reasons for
21 that, but it's again indicating the solution is temporary,
22 but could work well during the wildfire season.

23 [SLIDE CHANGE]

24 DR. MOHAMMAD HEIDARINEJAD: Now, before like
25 getting to the summary, let's look at two times. One we

1 call it non-wildfire period, meaning like most of the
2 times that these filters were deployed in that three, four
3 months. And as you could see here, again the same thing
4 on the I/O ratio, like for double intervention, slight
5 increase, not significant, similar result happening here
6 for the PAC only, like over you'll see like more outdoor
7 air origin like PM2.5 are coming in, and the PACs are not
8 able to catch up with that.

9 [SLIDE CHANGE]

10 DR. MOHAMMAD HEIDARINEJAD: We can look at during
11 the wildfire season, we had two times in August and also
12 in September. You could see the impact is a similar
13 pattern, but it's a little bit more severe here. So for
14 like single interventions, like meaning the homes again
15 with no filtration on their swamp coolers, that number
16 increased more than what we saw during the non-wildfire
17 times.

18 One thing to emphasize here, during the study
19 year, we had wildfire, but it was not as severe as
20 previous years. But again, looking at the results here
21 confirm this solution works well.

22 [SLIDE CHANGE]

23 DR. MOHAMMAD HEIDARINEJAD: In summary, we looked
24 at these air filtration solutions for both the pilot and
25 intervention year, and the solution with the filtering the

1 swamp coolers. We call it DIY, do it yourself, meaning
2 the homeowners with no training can do that. We also
3 looked at materials and filters that could be mostly
4 accessible and available to be installed.

5 One thing, we had it earlier, didn't get a chance
6 to get into that in more detail, we used MERV 13. It's
7 recommended for the filters. It also followed the same
8 recommendation that EPA and ASHRAE has. Also having
9 portable air cleaners with HEPA filters are effective in
10 terms of lowering the PM2.5 and PM10 levels in homes.

11 And ultimately, the solution is it could be good
12 for a few weeks, but their efficiency and effectiveness
13 will decrease over time. So overall, it's important to
14 make sure these swamp coolers, when they are drawing a
15 significant amount of outdoor air, are filtered during the
16 wildfire season.

17 Before passing it to Stephanie, I want to thank
18 the colleagues who worked on this. We have a few of them
19 here in person and few online and happy to respond to any
20 questions after the presentation.

21 Stephanie, I'll pass it to you.

22 [SLIDE CHANGE]

23 STEPHANIE JARMUL: Thanks so much, Mohammad. And
24 also big shout-out to the larger FRESSCA team and also the
25 team at SAABS for doing a lot of these analyses that I'll

1 be presenting on today for the biomonitoring data.

2 So other than the PM data, we also measured
3 levels of PAHs, VOCs, and metals in indoor and outdoor
4 air. Those results were presented at a previous SGP
5 meeting by Jeff Wagner last November. So today, we'll be
6 discussing the PAH, VOC, and metals data in the urine
7 samples. The FRESSCA-Mujeres study also did measure
8 biomarkers of stress in urine, and included saliva
9 telomere length and silicone wristbands to measure
10 pesticides for a small subset of participants, but we will
11 not be covering those data today.

12 [SLIDE CHANGE]

13 STEPHANIE JARMUL: So here's a look at our
14 demographics. We had 51 participants who provided at
15 least one urine sample. They were all non-smoking,
16 Hispanic/Latina women who primarily spoke Spanish. The
17 mean age was 41, and a majority owned their home, and had
18 Medi-Cal or Medicare, and most participants were either
19 farmworkers or worked in some sort of food packaging and
20 processing facility.

21 [SLIDE CHANGE]

22 STEPHANIE JARMUL: So we put together this
23 timeline to try to help clarify what data were collected
24 and when, since there's so many moving parts. And as we'd
25 stated, the study was designed to try to capture exposures

1 during a wildfire event. So what -- we collected a first
2 morning void sample in the spring/summer months to
3 establish sort of baseline exposures. Surveys were also
4 conducted at that time.

5 At the same time, we installed PurpleAir monitors
6 to monitor for PM and passive air samplers for PM and
7 metals at the homes of the participants. And then we
8 installed the portable air cleaners in all the homes and
9 the swamp cooler filters in half the homes, in hopes to
10 prepare for a wildfire event. As we did not have any
11 major event, we waited until October to collect the urine
12 samples. We collected one in the evening and then another
13 a first morning void. This design was chosen to see if
14 there might be any potential differences in the
15 metabolites of PAHs and VOCs, after spending time in the
16 filtered air. And that's because the PAHs and VOC
17 half-lives are short, generally within six to eight hours.

18 And then active air sampling was conducted for
19 the 24-hour period preceding the collection of the fall
20 morning samples. And we collected VOCs, PAHs, and metals
21 data for that.

22 [SLIDE CHANGE]

23 STEPHANIE JARMUL: So getting into the data
24 analysis. Non-detects were imputed with reporting limit
25 over the square root of two and we did not conduct any

1 analyses, if we had detection frequencies less than 65
2 percent. The urine results were adjusted for specific
3 gravity to account for dilution and adjust -- and were log
4 transformed. However, we did use creatinine-adjusted
5 values for our comparisons with NHANES.

6 The number of samples may change depending on the
7 analysis, as not all participants provided all three urine
8 samples. And then for any of our geospatial analyses that
9 we're including today, we were provided with approximate
10 participant locations to not include any PID.

11 [SLIDE CHANGE]

12 STEPHANIE JARMUL: So here are the detection
13 frequencies we had in the chemicals measured in urine.
14 And you can see we had pretty high detection frequencies
15 for almost all the chemicals, though 1,3-butadiene,
16 benzene, and manganese all had low detection frequencies,
17 and therefore they'll not be included in the analyses on
18 the following slides.

19 [SLIDE CHANGE]

20 STEPHANIE JARMUL: So one of the questions we had
21 was we wanted to see if the levels of PAH and VOC
22 metabolites decreased after spending time in filtered air.
23 We did not look at metals for this question as our
24 half-lives were much longer. And we would not expect to
25 see a difference in such a short amount of time. We also

1 checked if we could see any difference in metabolite
2 levels based on intervention types, similar to the
3 question that Mohammad wanted to answer using the PM data.

4 [SLIDE CHANGE]

5 STEPHANIE JARMUL: So participants, as I
6 mentioned, provided urine samples in the evening,
7 generally when they got home from work, and then again
8 about 12 hours later after sleeping at home in the morning
9 sample. And so what this plot shows is the estimated
10 percent change in concentration between a participant's
11 fall evening and fall morning urine sample. The color
12 blue here - this may be a little hard to see - means the
13 difference was significant. And so you can see that
14 metabolites of fluorene, phenanthrene, and pyrene were
15 either about the same or lower during this time period,
16 while metabolites of naphthalene increased, particularly
17 2-NAP. And this might point to perhaps an indoor exposure
18 source of naphthalene that we'll get into a little bit
19 later.

20 [SLIDE CHANGE]

21 STEPHANIE JARMUL: And then looking at the VOC
22 changes, again this plot shows the estimated percentage
23 change in VOC metabolite concentrations overnight. And
24 similar to the PAHs, you can see that metabolites of VOCs
25 were about the same or lower during this time period, and

1 with acrolein being significant and about 20 percent lower
2 in the morning samples than the evening samples.

3 [SLIDE CHANGE]

4 STEPHANIE JARMUL: So as I stated, metabolites of
5 both PAHs and VOCs generally decreased after spending time
6 indoors, except for naphthalene. This might partially be
7 explained by air filtration, but it could also be due to
8 differences in behaviors during work versus while they're
9 at home.

10 We did look at differences in the spring versus
11 fall samples based on paired t-tests of the morning
12 samples. Since, as we mentioned, we were originally
13 expecting much higher pollutant levels in the fall due to
14 a wildfire event. However, as there was no major wildfire
15 event, we did not see any significant differences between
16 the fall and spring morning samples.

17 We also did not see a significant difference in
18 metabolite levels based on the intervention type. And
19 Jeff Wagner's team had a similar finding for the PAHs and
20 VOCs in air. Again, since we didn't have a major wildfire
21 event, I think it would be hard to see differences at that
22 level of granularity in the biomarkers especially. And
23 also our Ns reduced even further when we had to split them
24 among the two intervention groups.

25 And additionally, it was found that a majority of

1 participants were not actually running their swamp coolers
2 the night that we collected the urine samples and had the
3 24-hour air sampling, which makes even more sense why we
4 weren't able to see a difference.

5 [SLIDE CHANGE]

6 STEPHANIE JARMUL: Okay. So the next question we
7 had was how do the levels of metals in PAH and VOC
8 metabolites in FRESSCA-Mujeres compare to NHANES?

9 [SLIDE CHANGE]

10 STEPHANIE JARMUL: Starting with metals

11 [SLIDE CHANGE]

12 STEPHANIE JARMUL: So we used a geometric means
13 of each participant's geometric mean across all three time
14 periods to compare to NHANES. We saw similar results when
15 we compared NHANES to each time period separately, which
16 is why we felt comfortable with this approach. You can
17 see here that the geometric means of antimony, arsenic,
18 and cadmium were similar or lower in FRESSCA compared to
19 NHANES non-smoking women.

20 Mercury was higher, though not significant.
21 Nickel was the only metal where we saw significantly
22 higher levels than NHANES. However, we also had seven
23 cases of mercury and/or arsenic levels above Biomonitoring
24 California's Levels of Concern, which I'll be going into
25 more details a bit later.

1 [SLIDE CHANGE]

2 STEPHANIE JARMUL: So for nickel, it was about
3 1.5 times higher in FRESSCA compared to NHANES. We didn't
4 find anything unfortunately that jumped out based on the
5 questionnaire data. And we asked questions such as
6 working with metals, either through their occupation or
7 hobbies, and we didn't see any difference based on
8 occupation. We also did not have any detects in the
9 FRESSCA air sampling data that was for the 24 hours before
10 sample collection. However, we did have a number of
11 detects in the passive air samplers and also the EC
12 filters. And those were up for a much longer period of
13 time.

14 So the fact that we're seeing nickel in those
15 samples might be more relevant due to the long half-life
16 of nickel. This also indicates exposures might still be
17 coming from air, since they were captured in those filters
18 and the samplers and will be -- and nearby oil and gas
19 activities might be a potential exposure source, which
20 again we'll talk about a little bit later. And just to
21 check, we did look at the drinking water data and did not
22 find any detects of nickel in the drinking water data for
23 these participants.

24 [SLIDE CHANGE]

25 STEPHANIE JARMUL: So as I discussed, we had five

1 participants who had mercury above Biomonitoring
2 California's Level of Concern and they all received early
3 notification. Three of those participants agreed to
4 participate in an additional exposure survey. The image
5 to the right here includes a number of products imported
6 from other countries that CDPH has found to contain
7 mercury. These are skin creams. Two of them were used by
8 our participants and we connected these participants with
9 a team at CDPH who was actually able to test the skin
10 creams of the participants and found mercury in all the
11 samples of their skin creams.

12 And CDPH also conducted home assessments for two
13 of those participants and did not find any other exposure
14 sources in the home, which confirmed that the skin creams
15 are the most likely source of these high mercury levels in
16 the participants.

17 [SLIDE CHANGE]

18 STEPHANIE JARMUL: And then we had three
19 participants who had total arsenic above Biomonitoring
20 California's Levels of Concern, and again received early
21 notification from our team. One participant had high
22 levels of organic arsenic, which is likely due to seafood
23 consumption and then less of a concern. Two participants
24 did though have elevated inorganic arsenic levels. One
25 agreed to participate in an additional exposure survey.

1 Unfortunately, nothing really stood out based on the
2 results of that survey, but we think we can at least rule
3 out drinking water for this participant as they were using
4 vended water for drinking and cooking, which removes
5 arsenic. And we also did not find any high levels of
6 arsenic in the drinking water data for this participant.

7 [SLIDE CHANGE]

8 STEPHANIE JARMUL: Okay. So next, we wanted to
9 look at VOCs and any potential differences in the
10 metabolites in FRESSCA compared to NHANES.

11 [SLIDE CHANGE]

12 STEPHANIE JARMUL: So metabolites of
13 acrylonitrile and crotonaldehyde were similar or lower
14 than NHANES, but acrolein and propylene oxide were
15 significantly higher in our FRESSCA population than NHANES
16 non-smoking women.

17 [SLIDE CHANGE]

18 STEPHANIE JARMUL: And so we wanted to look into
19 what exposure sources might be contributing to the high
20 levels of acrolein and propylene oxide metabolites in our
21 participants. And while all samples, so spring and both
22 fall and morning samples -- fall morning/evening samples
23 were generally higher than NHANES, we still did see higher
24 levels in the post-work evening samples for both acrolein
25 and propylene oxide. So it's 27 percent higher in the

1 acrolein metabolites and 16 percent higher in the
2 propylene oxide metabolites.

3 We also found for acrolein that the levels were
4 17 percent higher for each additional hour worked outside.
5 We think that this points to potentially exposure sources
6 that are happening outside the home for these
7 participants. And we did also find evidence that acrolein
8 and propylene oxide were ingredients in pesticides that
9 were applied in the region in 2023. And that was based on
10 DPR data. And unfortunately, we did not have
11 FRESSCA-Mujeres indoor or outdoor air monitoring data for
12 acrolein or propylene oxide.

13 [SLIDE CHANGE]

14 STEPHANIE JARMUL: Okay. And as I alluded to,
15 additionally for both acrolein and also nickel, we wanted
16 to see if the high levels in our population might be
17 explained by oil and gas activities in the Central Valley.
18 Elevated levels of acrolein were found in the air in Lost
19 Hills, a community within Kern County, which is one of our
20 counties. And that's based on data from CARB's SNAPS
21 report. Nickel is also often detected in air around oil
22 and gas activities such as oil refineries. And you can
23 see in this map that there are literally hundreds of oil
24 and gas wells in these communities and a number of oil
25 refineries as well.

1 We only had six participants however who lived
2 within 3,200 feet of an active well. And we chose that
3 buffer, because it is considered the health protection
4 zone around oil and gas operations. And that's out of
5 Senate Bill 1137, though we are planning on looking at
6 some larger buffer zones in the future as well.

7 And even though only six participants lived
8 within 3,200 feet of a well, we don't have the locations
9 of participant work locations, which may be more relevant
10 to their exposure period, since that would be where they
11 would be exposed to unfiltered outdoor air. And, yes, we
12 do not have those locations unfortunately.

13 | [SLIDE CHANGE]

14 STEPHANIE JARMUL: Okay. Switching to PAH
15 metabolites in urine.

16 | [SLIDE CHANGE]

17 STEPHANIE JARMUL: So again, we compared the
18 geometric means of participants in FRESSCA to NHANES, and
19 found that the PAH metabolites were all lower in
20 FRESSCA-Mujeres women, which was good news, except for
21 2-naphthol. So you might recall hearing a lot about
22 2-naphthol from our SAPEP and BiomSPHERE studies, where it
23 was also elevated.

24 | [SLIDE CHANGE]

25 STEPHANIE JARMUL: So you can see in this graph

1 here, we compared the levels from FRESSCA-Mujeres, which
2 were all non-smoking Hispanic women to a subset of women
3 from our BiomSPHERE study, which were also Hispanic women.
4 And then we wanted to look specifically at the Hispanic
5 women in NHANES since, from some of our previous analyses,
6 we know that it is generally higher than the average
7 levels in NHANES adults, either women or adults, both male
8 and female.

9 And you can see here that the FRESSCA Hispanic
10 women had similar levels of 2-NAP compared to Hispanic
11 women in BiomSPHERE. And then the levels of 2-NAP in both
12 FRESSCA and BiomSPHERE Hispanic women were still 2.5 times
13 higher than Hispanic women in NHANES and four times higher
14 than women in NHANES.

15 Just want to note here, you can see that the most
16 recent data we're still working with in NHANES is from
17 2015 to 2016, which is almost a decade ago.

18 [SLIDE CHANGE]

19 STEPHANIE JARMUL: And we also saw something
20 similar in our BiomSPHERE study with these correlations.
21 And you can see that the PAHs were all significantly
22 correlated with each other, including 1-NAP, except for
23 2-naphthol. The difference is pretty stark here, so we
24 think there's definitely a unique exposure to 2-NAP that
25 is not relevant to the other PAHs.

1 [SLIDE CHANGE]

2 STEPHANIE JARMUL: So we showed earlier on in our
3 slides that the 2-NAP levels were 16 percent higher in the
4 morning samples versus the evening samples, again pointing
5 potentially to an indoor exposure source. We did not find
6 any significant associations with cleaning product or air
7 freshener use, which is different from what we had found
8 in BiomSPHERE. Unfortunately though, similarly to
9 BiomSPHERE, we did not find any significant associations
10 with diet, such as consumption or cooking in fried or
11 smoked foods. But we might be missing some other
12 associations with dietary sources that we did not capture
13 in our questionnaire.

14 Additionally, some recent data that we've come
15 across in terms of speaking with other biomonitoring
16 programs indicates that 2-NAP is generally increasing both
17 in the country and actually globally, but nowhere near the
18 levels that we are seeing in SAPEP, BiomSPHERE, and
19 FRESSCA.

20 [SLIDE CHANGE]

21 STEPHANIE JARMUL: So again, still trying to
22 piece together the puzzle that is 2-NAP in our
23 populations. But with that, I will turn it back over to
24 Ileana who will discuss the community impacts and
25 perspectives of the FRESSCA-Mujeres study.

1 ILEANA NAVARRO: Thank you, Stephanie.

2 Can we go to the next slide, please.

3 [SLIDE CHANGE]

4 ILEANA NAVARRO: Thank you. So the community
5 response to FRESSCA has been overwhelmingly positive and
6 incredibly insightful. Participants expressed deep
7 gratitude for the portable air cleaners, for the free
8 maintenance to their swamp coolers that we provided. And
9 they reported noticeable improvements in their indoor air
10 quality and even in their health.

11 Although we didn't experience a major wildfire
12 event during the study period, many participants told us
13 that the interventions made a real difference during dust
14 storms, which we get a lot. With the swamp cooler filters
15 in place, participants felt far less dust penetrated their
16 homes, making these events a little bit more manageable.

17 However, participants did note that the biggest
18 challenge was the bulky filters and the difficulty to
19 install them and remove them. Beyond air quality though,
20 participants were genuinely shocked to learn about the
21 mercury-containing skin creams. A few actually owned
22 these products, as you heard, and were super grateful to
23 understand the health risks that they -- that they were
24 posing. Most importantly, participants felt empowered by
25 being part of this research.

It was a bit hard to grasp the technical analysis in the results packets that they received at the end of the study, but most participants already knew that they were being affected somehow or another. They just didn't understand at what levels. And this study brought them that sense of credibility to their stories they've been telling for years, but no one has really taken seriously.

And at the end, they really just wanted to know that their participation would lead to better and more accessible filtration options for the agricultural communities in -- in the Valley.

Next slide.

[SLIDE CHANGE]

ILEANA NAVARRO: And as mentioned at the beginning, I'm going to play the rest of Erika's video where she talks more about the FRESSCA -- how the FRESSCA study impacted her.

(Thereupon a video was played.)

ILEANA NAVARRO: Next slide, please.

[SLIDE CHANGE]

ILEANA NAVARRO: Lastly, I'm just going to talk about the next steps for the FRESSCA-Mujeres project. We are planning to promote ways to reduce exposures in the FRESSCA-Mujeres communities and beyond through portable air -- portable air cleaners in homes, swamp cooler

1 filters during a wildfire event, and conducting some
2 community engagement to reduce those exposures to mercury
3 skin creams that we found and to arsenic. We also want to
4 continue research to identify potential exposure sources
5 of naphthalene and other chemicals of interest. Through
6 this -- we want -- to do this, we want to combine data
7 from the FRESSCA-Mujeres, BiomSPHERE, and the SAPEP to
8 identify trends and also assess geospatial predictors of
9 traffic exposures.

10 And with that, that is the end of my portion of
11 the presentation. I'll pass it back to Stephanie.

12 Thank you all.

13 STEPHANIE JARMUL: Thank you so much, Ileana.

14 [SLIDE CHANGE]

15 STEPHANIE JARMUL: And here, we have our very
16 large study team for the FRESSCA study, with whom we could
17 not have done any of this work. So thanks. And some of
18 them are here today, so it's nice to see them.

19 [SLIDE CHANGE]

20 STEPHANIE JARMUL:

21 And, of course, thank you to our community
22 members who participated in this project, the scientific
23 advisors and the Community Advisory Group. And here's the
24 funding statement.

25 [SLIDE CHANGE]

1 STEPHANIE JARMUL: And with that, we'll take any
2 questions for any of the three of us.

3 ACTING CHAIR PADULA: Thank you, team, for a
4 great presentation. Any -- starting off with clarifying
5 questions from the Panel.

6 Go ahead, Tom.

7 PANEL MEMBER MCKONE: Tom McKone. I'm really and
8 also kind of fascinated by the 2-naphthol and why that
9 differed. And so you looked at diet, but I was wondering
10 if you looked at how food is prepared differently in
11 California, like -- or even such a thing as our natural
12 gas. I assume they're using gas. There's a different
13 composition than the average we would see in NHANES. And
14 then thoughts I had about what might account for the
15 different indoor level of naphthalene.

16 STEPHANIE JARMUL: That is an interesting
17 thought, because I'm pretty sure all of the FRESSCA
18 participants used gas appliances and had a gas stove. So
19 I don't -- yeah, we never really looked into if there
20 could be different compositions of the gas in California
21 or particularly in the Central Valley. So that's some
22 associations we can run. I think we're mostly looking at
23 VOCs for those associations. But, yeah, we should look
24 into naphthalene specifically. Thank you.

25 ACTING CHAIR PADULA: Carl.

1 PANEL MEMBER CRANOR: It's a simple question, but
2 did you have a measure of toxicity in selecting the
3 substances you studied or did you just take what was
4 present?

5 STEPHANIE JARMUL: Sorry. Do you mean how did we
6 choose the metabolites to measure?

7 PANEL MEMBER CRANOR: Yes.

8 STEPHANIE JARMUL: Well, we had chosen PAHs,
9 VOCs, and metals, because, as we mentioned, the goal of
10 the study was to capture a wildfire event and we were
11 aware that these are generally apparent in wildfire smoke.
12 And the exact metabolites we're able to run, it was a bit
13 limited by what our labs were able to run. And, of
14 course, it to be on the designated list, but there was
15 evidence that all the ones that we chose are often present
16 in wildfire smoke.

17 PANEL MEMBER DURRANI: Timur Durrani. I thought
18 you mentioned that you guys had also measured biomarkers
19 of stress in urine. Can you talk a little bit about that?

20 STEPHANIE JARMUL: Yeah. So for our other
21 studies, we measured only three or four biomarkers of
22 stress through Nina Holland's lab. And for the FRESSCA
23 study, this is -- this is not really Biomonitoring
24 California's part of the study, but as the FRESSCA-Mujeres
25 study, they measured 19 different biomarkers of stress

1 from a lab out of New York. And so we do have plans to
2 look a little bit more closely at that data and see if we
3 can see any associations between the biomarkers of
4 exposure and effect. But we're not as clear how to handle
5 all those 19, so it might take us a little bit longer to
6 try to make sense of all the data.

7 ACTING CHAIR PADULA: Go ahead, Jenny.

8 PANEL MEMBER QUINTANA: I'm sorry if you touched
9 on this, but could agricultural burning contribute to the
10 naphthalene exposures or metabolites? I wasn't sure if
11 that was an area that had a large contribution, but I
12 think -- I know many -- much of the Central Valley does
13 have a fairly large contribution.

14 Thank you.

15 STEPHANIE JARMUL: I think it could. Although,
16 we aren't seeing very high levels in air for naphthalene.
17 You know, it's always the most abundantly detected PAH,
18 but at levels that we see in other areas too where we
19 don't see the same high levels of 2-NAP in the urine.

20 PANEL MEMBER QUINTANA: Thank you.

21 PANEL MEMBER SUÁREZ: How about the prevalence of
22 the use of mothballs in this population?

23 STEPHANIE JARMUL: Unfortunately, we did not ask
24 about mothballs. This is going on at the same time as our
25 BiomSPHERE study, so before we really learned that we

1 should add that to a future study, which we are going to
2 do for the CHAIRS study. We did not ask specifically
3 about mothball use. But for every single person to be
4 using mothballs, it just seems unlikely. Although, it
5 might still be possible.

6 PANEL MEMBER SUÁREZ: I mean, not every single --
7 I mean, it -- was it substantially higher in every single
8 person or are we just --

9 STEPHANIE JARMUL: I think --

10 PANEL MEMBER SUÁREZ: -- looking at the average
11 here comparing --

12 STEPHANIE JARMUL: I think every single person
13 had very high levels. Of course, there was a range. I
14 don't know, Dan, if you have a little bit more details on
15 that, but...

16 PANEL MEMBER SUÁREZ: That would be unusual.

17 DAN SULTANA: Yeah, it was generally higher
18 for -- in the study.

19 STEPHANIE JARMUL: Oh, that's right. When we
20 talked to the Minnesota Biomonitoring team about some
21 higher levels that they were seeing, though not as high as
22 hours, they had asked a question about mothballs. And I
23 think they only found like a few people had been using
24 them in their population.

25 PANEL MEMBER SUÁREZ: Right. I mean, I wonder if

1 their difference isn't in their population versus here.

2 STEPHANIE JARMUL: It's true there were -- yeah,
3 they didn't have as many Hispanic people in their
4 populations. And interestingly enough, they had found
5 elevated levels in Black participants, which if you recall
6 in BiomSPHERE, we had found a similar finding, although we
7 only had a few Black participants in the study, so we
8 couldn't really make any conclusions, but it's interesting
9 that they're finding a similar trend.

10 And then there is a study that recently came out
11 in the east coast, I think Maryland/D.C. area. It was a
12 small study looking at occupational exposures to
13 hairdressers, both Black and Latina women. And that's the
14 only study we found that has come close to the levels that
15 we're seeing in our population, which is very interesting,
16 but our population was not obviously hairdressers, so --
17 yeah, that's something else that we're looking over.

18 PANEL MEMBER DURRANI: Timur Durrani. Can you
19 talk about the exposure survey that went on for -- I know
20 you did it for mercury, but for arsenic. How did that go
21 about or is that -- can someone review how did that occur
22 once you see this level above a threshold.

23 STEPHANIE JARMUL: So I might pass it to McKenna,
24 but -- so, when we are notified that the levels are above
25 our Level of Concern, we essentially send them a packet

1 that is -- let's them know that the levels are above a
2 concern and potential exposure sources and then we invite
3 them to participate in another exposure survey that asks
4 more detailed questions about potential exposure sources.
5 So for arsenic, you know, we even asked about like teas,
6 supplements, where they got their drinking water source
7 from, things like that. And for that one participant who
8 conducted the additional survey, we were not able to find
9 anything significant that stood out. We asked even about
10 like specific brands that we looked into and couldn't find
11 anything.

12 MCKENNA THOMPSON: I think you covered it.

13 (Laughter).

14 ACTING CHAIR PADULA: We can also open it up to a
15 general discussion, if we haven't already.

16 PANEL MEMBER SUÁREZ: I have more questions. And
17 part of it is the same thing trying to understand what you
18 make of it. So looking at that same table here comparing
19 the VOCs. And this is José Suárez, by the way. Sorry.

20 Naphthalene, right, is higher, but then the other
21 part is substantially lower for pretty much everything
22 else. What are your thoughts on that?

23 STEPHANIE JARMUL: You mean, for the PAHs in
24 general, why they're lower?

25 PANEL MEMBER SUÁREZ: Well, the ones that are at

1 least shown here, right?

2 STEPHANIE JARMUL: Yeah. That is a very
3 interesting question. I'm not really sure why they are so
4 much lower? You know, they're significantly lower in our
5 population, which, you know, we take as good news, but I
6 can't really say why.

7 PANEL MEMBER SUÁREZ: Yeah. I mean, it's
8 something that once you're getting to that part of it,
9 writing and doing the discussion, it is also a very
10 interesting finding, what is it about these populations
11 that are leading with that, but it sounds like somebody
12 maybe has a thought.

13 MCKENNA THOMPSON: I was just going to point out,
14 I believe our -- this is McKenna Thompson from OEHHA.

15 (Laughter).

16 MCKENNA THOMPSON: I believe our collaborators at
17 UC Berkeley have found that PAHs in air in the Central
18 Valley in general have been going down over the past 10
19 years, so that could be a contributing factor.

20 STEPHANIE JARMUL: And is that due to like
21 different regulations?

22 MCKENNA THOMPSON: (Nods head).

23 STEPHANIE JARMUL: Yeah.

24 DR. JOHN BALMES: Yes.

25 STEPHANIE JARMUL: Okay. Great.

1 (Laughter).

2 That was John Balmes in the affirmative.

3 DR. JOHN BALMES: Less diesel emissions and less
4 agricultural burning.

5 STEPHANIE JARMUL: Okay. John Balmes said less
6 diesel emissions and less agricultural burning. Okay.

7 PANEL MEMBER SUÁREZ: Would it be enough to
8 explain this lower concentration versus NHANES for that
9 matter? Are the -- is the pollution substantially lower
10 as a result of that in the Valley than the average U.S.
11 area?

12 DR. JOHN BALMES: No, actually -- this is John
13 Balmes again. Actually, the levels are higher in --
14 they've gone down substantially, but they're higher than
15 many parts of the country. I mean, the Fresno area and
16 actually at the Bakersfield area, those are two of the
17 most polluted cities in the country --

18 PANEL MEMBER SUÁREZ: Yeah, that was --

19 DR. BALMES: -- from traffic related air
20 pollution.

21 PANEL MEMBER SUÁREZ: That was my understanding
22 too, but I was coming back to this, right.

23 STEPHANIE JARMUL: Great point. Great question
24 that we'll look into further.

25 PANEL MEMBER SUÁREZ: I can --

1 ACTING CHAIR PADULA: You have a question.

2 PANEL MEMBER SUÁREZ: I have more questions, but
3 I'll --

4 SUSAN HURLEY: After him.

5 PANEL MEMBER SUÁREZ: Oh, no. Please, please go
6 ahead.

7 SUSAN HURLEY: Okay. Well, it's kind of related
8 to that just that -- oh, Susan Hurley from CDPH,
9 Biomonitoring.

10 Just following up on John's point. While the
11 levels of a lot of PAHs in the air may be going -- or may
12 be higher in California. The other thing to remember is
13 we do have this temporal issue, where we're comparing our
14 levels to data in NHANES that was collected 10 years ago.
15 So we can't tell if this is a geographic issue or a
16 temporal issue.

17 DR. BALMES: That's a very good point.

18 STEPHANIE JARMUL: Great point. And even that
19 for fluorene it was 2011 to 2012, so even longer than --
20 and I don't know how hopeful we are that any new data
21 might be coming out soon.

22 STEPHANIE JARMUL: José.

23 (Laughter).

24 PANEL MEMBER SUÁREZ: José Suárez. So another
25 big thing was compliance that you were concerned about.

1 Tell me a little bit more about -- do you have any numbers
2 about compliance in that sense. And part of the concern
3 seems to be the overnight use tool of running -- actually
4 running the swamp cooler or not using it, for that matter.

5 DR. MOHAMMAD HEIDARINEJAD: Yeah. I mean,
6 usually, in general, like during the nighttime it's
7 cooler. So they are not running the coolers that much
8 that's needed for the study here. So maybe like change of
9 the study design. Is it like better to do it maybe during
10 the day or something, rather than like morning and
11 nighttime?

12 STEPHANIE JARMUL: Well, I guess the problem is
13 if they were at work during the day though, then it
14 wouldn't be capturing those exposures anyways. Can you
15 talk a little bit more about -- Mohammad, about the plug
16 load loggers --

17 DR. MOHAMMAD HEIDARINEJAD: Sure.

18 STEPHANIE JARMUL: -- and how they work to
19 determine --

20 DR. MOHAMMAD HEIDARINEJAD: Yeah. Like if the --
21 like for all the devices like portable air cleaners and
22 swamp coolers as much as possible, so we had plug load
23 loggers. So we -- meaning that we know when they are
24 running it and how are they running it? Are they running
25 it at low speed, medium speed, or high speed? So we're

1 able to capture like their usage and understand --
2 especially for portable air cleaners and the swamp
3 coolers. If you are running it at a low speed for
4 portable air cleaners, so you're not getting enough clean
5 air delivery rate, CADR.

6 So ideally you want to make sure you run it at
7 high speed to get that portable air cleaner like removal
8 efficiency needed. The same thing with like the swamp
9 coolers. If you're running it at a higher speed, meaning
10 they're pulling more air coming in, even if you have the
11 filters on, they might not be effective at some point.

12 But I would say in terms of like compliance and
13 running it during the nighttime, we were able to identify
14 a method to know when they're running their swamp cooler
15 based on the outdoor temperature. We call it like
16 predicted to be on and also like measured on. And during
17 the nighttime usually it's cooler, so they are not running
18 those coolers, as much as you could see in terms of the
19 filtration efficiency there.

20 DR. MARTHA SANDY: Martha Sandy, OEHHA. So I
21 wasn't part of the study design team, but a couple years
22 previous to when this study -- when they were in the
23 field, we had multiple summers with lots of wildfire smoke
24 events, when it was hot, you know, the dog days of August,
25 for instance, and you would predict they would have had

1 their swamp coolers on at night. I'm just -- and someone
2 may want to add more.

3 DR. MOHAMMAD HEIDARINEJAD: Yeah, that's -- I
4 mean, that's really in terms of the why part. I think the
5 maximum we got in that September was about maximum, maybe
6 35 microgram per cubic meter compared to what you see
7 during the wildfire time, usually that get to 100, 150.
8 So we didn't have that magnitude at that time.

9 The other one is like, of course, the extreme
10 heat become a factor there. When it's like significantly
11 warmer, you run the cool air more than before.

12 DR. NERISSA WU: So this is Nerissa. I had a
13 question. Did you get any feedback from participants
14 about the use of the swamp coolers, in terms of noise or
15 the expense of running it? As an intervention, is it
16 something that be would acceptable to the families to have
17 them on?

18 DR. MOHAMMAD HEIDARINEJAD: Sure. I mean, we had
19 a survey. I think, Julie, you looked at the survey, but I
20 can answer a few things. Like looking at the pilot year,
21 for example, we had DIY air cleaners, like these
22 Corsi-Rosenthal, you know, air cleaners there. Like
23 usually they didn't like it because it was moving a lot of
24 air in the room, so they were like putting it in the
25 closet or somewhere else, so that's why we decided in the

1 full intervention to go with smaller units, that they are
2 more effective, but smaller, and they don't run that
3 amount of air flow in the space.

4 In terms of the swamp coolers, I think one of the
5 complaints they had was if you are getting these swamp
6 coolers with different like very, like, you know, random
7 shapes, like the narrow ones, so you end up maybe using
8 like four or six maybe filters rather than three or four
9 that is like recommended. So that's why it becomes a
10 little bit bulky and they didn't like that one.

11 But I think it's an iterative process. Over time
12 you like run different filters install them, get the
13 feedback, and overtime you can polish these DIY solutions
14 with a combination of filters, and, you know, like, you
15 know, seeing like sheet filters that could be appended to
16 those like narrow version of the swamp coolers.

17 Julie, I don't know if you want to add anything
18 about the survey. We did a survey of the 50 homes,
19 correct?

20 JULIE VON BEHREN: Hi. Julie Von Behren, UCSF.

21 We did ask some satisfaction related surveys for
22 the ECUs. And one of the things that I just wanted to add
23 to what you already said was that cost was a definite
24 issue. We asked about a price point. Would they be
25 comfortable spending, because it is a DIY. And I think it

1 was pretty low, like \$20 or less, is what they indicated.

2 DR. MOHAMMAD HEIDARINEJAD: That's true, yeah. I
3 think if I recall correctly, it was 20. Thank you, Julie.
4 And our solution from the beginning, we were aiming about
5 maybe \$100. But we ended up going a little bit higher
6 than that. Also like, Ileana, if you have more from the
7 field, that would be good.

8 ILEANA NAVARRO: You know, we -- I don't think we
9 ever received any complaints about noise or the air
10 cleaners being too loud, nor the air filters on the swamp
11 coolers. I think what Mohammad said about it being bulky
12 and just the size of it was the only issue, but yeah, no
13 complaints about noise.

14 ACTING CHAIR PADULA: Go ahead, Carl.

15 Sorry, you need a mic.

16 PANEL MEMBER CRANOR: Thank you. Carl Cranor.
17 UC Riverside. I want to ask a big question. You've
18 studied a group of substances that are worth studying. If
19 you took the universe of airborne toxicants, what have you
20 left out? Do you know? Have you thought about them?

21 (Laughter).

22 STEPHANIE JARMUL: I mean, we do think about them
23 ahead of all of our studies and sort of what's most
24 relevant to measure. We always do research ahead of time
25 to figure out what we might expect to see based on the

1 exposure sources that we're interested in, particularly
2 air pollution. And again though, it also depends on what
3 we're able to measure based on our designated list and
4 also what our labs can measure. So I think that is a big
5 limitation is sort of what methods have been developed or
6 not been developed. But I'm sure there are things that we
7 are missing and we continue to evolve and add more
8 chemicals as we can. But if you have any ideas --

9 PANEL MEMBER CRANOR: Let me ask -- let me ask
10 you about one of them.

11 STEPHANIE JARMUL: Okay.

12 PANEL MEMBER CRANOR: Air particulates are really
13 nasty. I mean, you haven't done those I suppose or these
14 are components of air particulates, but should the air
15 particulates be studied in a similar way?

16 STEPHANIE JARMUL: Are you talking about
17 particulate matter, in particular, like a biomarker for
18 particulate matter?

19 PANEL MEMBER CRANOR: Sure.

20 (Laughter).

21 STEPHANIE JARMUL: You know, I'm pretty sure -- I
22 don't know if Jeff Wagner is on. I think he's done some
23 work sort of looking more closely at like breaking down
24 the particulate matter in air and getting more ideas of
25 like what it's actually made up of. Jeff, are you on and

1 want to talk a little bit more about that?

2 DR. JEFF WAGNER: Yeah.

3 (Laughter).

4 DR. JEFF WAGNER: So -- I'll go on camera. Yeah.

5 We are -- our lab did -- in addition to the continuous
6 monitoring that Mohammad was talking about today, we did
7 electron microscopy of the particulate matter. And so we
8 were able to get the different size fractions, the
9 different chemical components and some source information
10 about the different particle types.

11 So we looked at fine particles, coarse particles,
12 metals in the particles, but I have a feeling you might
13 also be asking about what Stephanie mentioned, which is
14 some kind of biomarker of the particles themselves. And
15 that's an interesting question. I'm only familiar with
16 that type of work for microplastics personally, as far as
17 particles that don't dissolve and persist in particulate
18 form in various fluids and tissues. So I don't know,
19 that's an interesting question. Also asbestos. Other
20 types of persistent particles that don't break down and
21 would be detectable in tissues or fluids. I think that's
22 an interesting question.

23 REBECCA BELLOSO: Hi. This is Rebecca Belloso
24 from OEHHA. We do have three comments from attendees
25 online. So I'll start reading the first one.

1 It's from an anonymous attendee. "I remember
2 hearing about widespread outdoor grilling in the Central
3 Valley and that it contributes to poor air quality. Would
4 this contribute to naphthalene? Though it seems odd that
5 other PAHs didn't increase given grilled food contains
6 high levels."

7 STEPHANIE JARMUL: I think they stated it.

8 (Laughter).

9 STEPHANIE JARMUL: They answered my question.
10 But also, again, we did find naphthalene in the air,
11 although not at particularly higher levels than we've seen
12 in other studies. And we did not see any associations
13 with naphthalene in air and the naphthalene metabolites.
14 But we only had eight outdoor air monitors. So we didn't
15 have as specific of data for the outdoor air as we did for
16 the indoor for the chemicals, including naphthalene.

17 REBECCA BELLOSO: Thank you. The second question
18 is also from an anonymous attendee. "I believe
19 nap-containing mothballs are not allowed to be sold in
20 California."

21 STEPHANIE JARMUL: Great point. That is also
22 true. Although, you still could technically buy them. I
23 think we've even found them in some stores and you can buy
24 them online, but you are not supposed to.

25 (Laughter).

1 REBECCA BELLOSO: And the third question is also
2 from one anonymous attendee. "How does your LOD compare
3 to NHANES for naphthalene?"

4 And I believe Dan Sultana may have an answer to
5 that.

6 DAN SULTANA: Yeah. So our -- it was a -- the --
7 it was about half of what the NHANES LOD was, but both
8 NHANES and FRESSCA have hundred percent detection rates.
9 So we don't think it's as elevated -- LOD difference isn't
10 explaining the higher levels we're seeing.

11 ACTING CHAIR PADULA: Any other questions online?

12 Okay, José.

13 PANEL MEMBER SUÁREZ: Since we're talking about
14 naphthalene, I'm looking at here the -- your -- the
15 results that you have for the overnight difference.

16 STEPHANIE JARMUL: Um-hmm.

17 PANEL MEMBER SUÁREZ: So this is -- so these
18 differences are actually not the night and the morning.
19 Kind of. Tell me a little bit about that, because it
20 is -- you collected the urine in the morning and then in
21 the evening, right?

22 STEPHANIE JARMUL: So the first sample was
23 collected, let's say, on a Tuesday after work. We
24 instructed them immediately upon coming home from work
25 take a urine sample. And then 12 hours later when they

1 woke up to take the first morning sample. Yeah, so it
2 was --

3 PANEL MEMBER SUÁREZ: So it was evening and then
4 morning.

5 STEPHANIE JARMUL: Exactly, yes.

6 PANEL MEMBER SUÁREZ: Okay. So then it makes
7 sense. So, I mean, the interesting thing here is that the
8 concentrations do go up overnight --

9 STEPHANIE JARMUL: I know.

10 PANEL MEMBER SUÁREZ: -- which really is pointing
11 not at a nutritional source necessarily, unless it takes a
12 little bit of time for it to -- if they ate something at 5
13 p.m., some meat that had it, maybe gets absorbed and you
14 see it in the morning. The other one would be maybe
15 there's something in the indoor environment that's leading
16 to that.

17 STEPHANIE JARMUL: And it's -- you know, based on
18 this recent study that came out on hairdressers, and just
19 some more evidence that we had that, you know, it could be
20 used in dyes and fragrances. I'm wondering if it's, you
21 know, in some sort of personal care products and it's
22 maybe being hidden under the label of fragrance. We don't
23 know, but that's one of our pet theories.

24 PANEL MEMBER SUÁREZ: Under fragrance, you would
25 think of naphthalene, really?

1 STEPHANIE JARMUL: Yeah.

2 DR. MOHAMMAD HEIDARINEJAD: These measurements
3 are conducted in October?

4 STEPHANIE JARMUL: Correct. Yeah. This one is
5 specifically October, yeah.

6 DR. MOHAMMAD HEIDARINEJAD: So that's why maybe
7 during the night, they don't need to run the swamp cooler.

8 STEPHANIE JARMUL: Exactly. Yeah.

9 ACTING CHAIR PADULA: And that was the time that
10 the swamp coolers were put on, even though there was no
11 wildfire too, so there was kind of a less of (inaudible).

12 STEPHANIE JARMUL: Yeah. We had a hurricane
13 during that season, where we actually -- I can't remember
14 if you were there -- Mohammad was there, but a team had to
15 go and remove -- at least CCEJN was very involved --
16 remove the filters during the hurricane and then put them
17 back on. So it was a very strange year that that
18 happened --

19 (Laughter).

20 STEPHANIE JARMUL: -- that we weren't really
21 prepared for.

22 PANEL MEMBER SUÁREZ: No. I do want to
23 congratulate you though for the work -- the whole -- I
24 mean, you can tell there was so much thought process going
25 in there. It is very challenging to do an intervention

1 like this, especially with the cost, the filtration, the
2 monitoring, the biomonitoring, so many different
3 components. In that sense, I think it was a very
4 successful intervention, and not only from the indoor part
5 of things. Of course, it didn't turn out with all the
6 VOCs and things like those, but there are reasons to
7 believe that, given the right conditions, it may actually
8 be far more beneficial than what we're observing, right?
9 There were no major events of fire that happened for you
10 to really look at the differences.

11 So I think it's very encouraging that this is,
12 you know, very easily implementable. And it seems to be
13 moderately well received intervention by the different
14 communities.

15 STEPHANIE JARMUL: Thank you. And just a big --
16 I want to make sure I give a big shout-out to Gina Solomon
17 and Nayamin Martinez, who were the initial PIs of the
18 FRESSCA and FRESSCA-Mujeres studies and sort of brought
19 this larger great team together.

20 ACTING CHAIR PADULA: I just have one follow-up
21 question to this conversation. I was wondering if
22 we've -- if -- I guess some of this makes me want to look
23 into the work of Ami Zota, who's done a lot on hair
24 products and chemicals. And I was wondering if that's
25 come up?

1 STEPHANIE JARMUL: Yes. We are looking into it.
2 We are aware of it.

3 ACTING CHAIR PADULA: Okay.

4 STEPHANIE JARMUL: Yes.

5 ACTING CHAIR PADULA: Great. And then I was just
6 also wondering about the energy costs, whether that was of
7 concern?

8 DR. MOHAMMAD HEIDARINEJAD: Not a concern,
9 because, in general, swamp coolers, like the cost of
10 operation, it's about like maybe one quarter of if you're
11 running like split systems.

12 ACTING CHAIR PADULA: Okay.

13 DR. MOHAMMAD HEIDARINEJAD: So like that's not a
14 concern, but technically if you're adding a filter to the
15 swamp coolers, you're increasing a little bit the power
16 consumption, but not as much as like that could be a
17 concern.

18 STEPHANIE JARMUL: Jenny has a question.

19 ACTING CHAIR PADULA: Great. Jenny, you want to
20 go ahead.

21 PANEL MEMBER QUINTANA: Sure. I think there's
22 time for just a quick question. Just -- I was just
23 wondering about housing type and if it was -- differed
24 from other housing? And I guess I was just thinking of
25 that whole FEMA trailers and formaldehyde, know, thing

1 with the Hurricane Katrina. So it just made me think
2 about housing type and if they're more likely to be
3 manufactured housing or something like that.

4 Thank you.

5 DR. MOHAMMAD HEIDARINEJAD: They're usually like
6 manufactured housing, smaller ones in terms of their like
7 square footage, but they are usually smaller than the
8 typical we see in the U.S.

9 STEPHANIE JARMUL: And I think for the
10 biomonitoring samples, we did look into any potential
11 differences based on housing type and we did not see any.

12 PANEL MEMBER QUINTANA: Thank you.

13 DR. MOHAMMAD HEIDARINEJAD: And just going back
14 to the energy cost questions, like for different projects
15 we are paying participants for running the portable air
16 cleaner all the time, but that doesn't help to make sure
17 they're running it.

18 (Laughter).

19 ACTING CHAIR PADULA: All right. If that's it
20 for questions. I think we'll wrap-up and thank you to the
21 FRESSCA team for a great presentation.

22 (Applause).

23 ACTING CHAIR PADULA: So in our next agenda item,
24 we will be hearing from Stephanie again.

25 (Laughter).

1 ACTING CHAIR PADULA: Sorry, you can't sit down
2 yet. She'll provide a brief overview of the planning for
3 SGP meetings in 2026.

4 (Slide presentation).

5 STEPHANIE JARMUL: Thank you. Almost forgot
6 about this one.

7 (Laughter).

8 STEPHANIE JARMUL: So as Amy mentioned, I'm just
9 going to briefly discuss our plans for next year's SGP
10 meetings.

11 [SLIDE CHANGE]

12 STEPHANIE JARMUL: So we worked with the Panel -
13 always very difficult, since everyone one is so busy - to
14 select the following dates for our meetings in 2026. So
15 we have a meeting on Wednesday, March 4th from 1 to 4
16 p.m., and then on Monday, August 3rd from 10 a.m. to 4
17 p.m., and Monday, November 16th from 1 p.m. to 4 p.m.
18 We're still going to be making determinations on each
19 meeting's location. So we'll let everyone know closer to
20 the meeting date and we'll update on our website, but we
21 will still be having the hybrid format throughout 2026.

22 So we will also still have our standing agenda,
23 which includes a general Program update, and then more
24 detailed project updates, such as updates on our
25 surveillance studies and community studies. As always,

1 we'll also have time for discussion and input from the
2 Panel and audience. These are some other potential topics
3 of interest that we've put forward that we could consider
4 exploring.

5 [SLIDE CHANGE]

6 STEPHANIE JARMUL: And these include either
7 internal or guest speaker presentations on the use of
8 artificial intelligence in class-based semi-targeted
9 screening. It seems we can't escape AI, even if we try.
10 Exposure to microplastics, updates from international
11 biomonitoring programs. I think it would be really
12 interesting to hear what they're researching and some of
13 their results, and then, of course, impacts of climate
14 change, which has been on our list for a while, such as
15 wildfires, droughts, et cetera, and their impacts on
16 chemical exposures.

17 So now, we welcome any input from the Panel and
18 audience on these suggestions and additional topics that
19 we might consider. So I'll stop there and see if anyone
20 would like to add anything or have any questions.

21 It sounds like we have something online.

22 REBECCA BELLOSO: Yes. We have Feng available.
23 Let me unmute you.

24 STEPHANIE JARMUL: Feng, are you speaking?

25 REBECCA BELLOSO: I'm asking her to unmute.

1 Well, maybe we'll come back.

2 ACTING CHAIR PADULA: Maybe we'll take Tom's
3 question first.

4 PANEL MEMBER MCKONE: Okay. I don't have a
5 question, I guess. Well, a comment. So the use of
6 artificial intelligence is probably a good idea. I mean,
7 I think stuff is really emerging and to see how it fits.
8 I was looking at the climate change issue. And, I mean, I
9 know we're already doing -- that you're already doing
10 studies about how climate change affects exposures to PM
11 and a whole range of pollutants. I was just wondering if
12 there's a way to begin to integrate -- I mean, not to call
13 it a biomarker of climate change stress, but if there's a
14 way to begin to organize, you know, the multiple stressors
15 that arise from a change in climate into some way of
16 expressing through stress biomarkers or exposure
17 biomarkers how things are changing in the population, so,
18 you know, to kind of quote say a climate change biomarker.
19 But it might be possible to do something like that,
20 define, you know, an array of things you could see in
21 blood that would in -- would show the rising change in
22 those markers of stress and exposure that we could
23 associate with climate change. It's kind of a wild
24 thought, but I mean, it would be different than just
25 individual studies that say wildfires or heat stress or

1 one thing at a time, but more of an aggregated approach.

2 STEPHANIE JARMUL: Yeah, that's a great idea.
3 And it would be interesting to look at the biomarkers of
4 stress. And the FRESSCA study did collect telomere length
5 in saliva, which I think is also really interesting. And
6 I don't know if that would be potentially something to
7 look at too, maybe not by -- I don't if our Program could
8 do that, but for others.

9 PANEL MEMBER SUÁREZ: I have a comment here for
10 Oliver, actually, or questions --

11 (Laughter).

12 PANEL MEMBER SUÁREZ: -- or more so. Are you
13 using AI when you're running untargeted analyses and
14 things like that?

15 PANEL MEMBER FIEHN: Yeah. So in principle, AI
16 is a multivariate analysis if you like. So if you have
17 many, many parameters and you have some output, you can
18 always use AI. So it's a little bit like a progression
19 from machine learning that we had in the past, right? So
20 it's not -- in the sense, AI was already invented in the
21 1960s, but they didn't have the computers for it, right?
22 Now, we can get really complicated complex, you know,
23 questions answered this way, as you all know. Now, for
24 our non-targeted analysis, my own lab, we do it for
25 retention time prediction, right?

1 So when you have -- let's assume you have a
2 thousand or two thousand compounds that you see and you
3 want to identify that. The question is how often are you
4 wrong, right, and how can you be not so wrong when you say
5 I found 2-naphthol or whatever, right, instead of like
6 somewhere else that -- some other -- some other isomer,
7 and that's why we use it, but we also use it for
8 multi-omic integration.

9 So when you have, for example, the prediction of
10 microbiomes that you want to see, what can -- what can
11 they together produce? So any of these AI methods is
12 really looking at large data sets and complex data sets.
13 So the question is that I would have here is do we have
14 those data sets and do we have some kind of outcomes that
15 we could, you know, basically regress on? It's like a --
16 like a regression, just like a little more complicated
17 than a regression, but yeah, right?

18 So that is -- that is how we use it these days.
19 Can there be other uses? Yeah. I -- when I looked at
20 this topic, I thought like do we have enough experts or
21 literature to kind of fill it, right? That was a little
22 bit my question.

23 STEPHANIE JARMUL: Sounds like you might be one
24 of them?

25 (Laughter).

1 PANEL MEMBER FIEHN: Yeah, yeah, yeah, but, you
2 know, okay. But in terms of environmental exposure, you
3 know, that's the -- that's the -- that's the thing, and
4 what exactly would we use it for, right? You know, when
5 you look at all the presentations we've had here, there
6 are usually unique barriers. You have a compound, you
7 have a regression in time, or -- you know, and then you
8 have -- or you have box plots, you know, before, after,
9 right? So this is like classic statistics, right, which
10 is fine, you know.

11 And also to Tom's question, right, can we get a
12 multi-stress composite? That's an AI question actually,
13 right? So but then the next question is do we have the
14 data for it, right? And also some kind of where do we get
15 the data? Is it like coherent? It's like -- it's not
16 that easy. People -- it's easy to say AI. It's hard to
17 get the data for it. That's what I'm thinking.

18 STEPHANIE JARMUL: Great question. Great answer.
19 (Laughter).

20 STEPHANIE JARMUL: Did Feng ever figure out how
21 to unmute? Okay. Okay.

22 Well, we welcome input any time to our email or
23 you can contact me directly.

24 Oh, Oliver does have something.

25 PANEL MEMBER FIEHN: So, you know, I had wondered

1 a little bit what our target lists to our chemical lists.
2 Should we also want an update on that. And, you know,
3 when we put things on the designated list, you know, have
4 we considered measuring some of them, or are there new
5 chemicals that we should discuss? I have the feeling we
6 haven't done it for a while.

7 STEPHANIE JARMUL: Yeah. The last time was
8 expanding the PFAS list a couple of years ago, but yeah.
9 And certainly if there is any chemicals that people have
10 in mind that are -- they have interest of adding to the
11 list, if it's not already on, please let us know.

12 ACTING CHAIR PADULA: Maybe just before I wrap
13 up, I'll just have maybe one other comment in that -- I
14 mean, personally I'm really interested in the combination
15 between that first AI or use of semi or even non-targeted
16 screening, potentially in ones that have already been --
17 you know, biospecimens that are available or analyses that
18 have already been run, and then rerun them with wildfire
19 or even other climate change factors in mind. So kind of
20 go back and reanalyze the data with kind of new exposure
21 metrics, maybe separating them out by maybe a high climate
22 stress versus not, and then see if there are any
23 differences in some of these non-targeted things, based on
24 that, and -- yeah.

25 STEPHANIE JARMUL: Thanks. That would be very

1 interesting to see.

2 ACTING CHAIR PADULA: At least, if it's already
3 done, then it's maybe not so costly too.

4 (Laughter).

5 ACTING CHAIR PADULA: Great. I think then that
6 puts us into the open public comment period. Thank you,
7 Stephanie, for our Program plans for next year.

8 So we have about 10 minutes allotted for this
9 period. So webinar attendees can submit written comments
10 and questions via the Q&A function of the Zoom webinar or
11 by email to biomonitoring@oehha.ca.gov, and we will read
12 them out loud. And if you wish to speak, please alert us
13 with using the raise hand feature in Zoom and Rebecca will
14 call on you to share your comments live. And then if
15 you're attending in person or wish -- and wish to comment,
16 please come to the front or raise your hand and we'll call
17 on you and bring you a microphone. And for the benefit of
18 the transcriber, we encourage you to identify yourself
19 before providing comment, and -- however, there's no
20 obligation, if you would like to comment anonymously.

21 This is the quiet before the storm.

22 (Laughter).

23 ACTING CHAIR PADULA: And are there any online?

24 REBECCA BELLOSO: No, we haven't received any
25 comments online.

1 ACTING CHAIR PADULA: So there will be a
2 transcript of this meeting posted on the Biomonitoring
3 California website when available. And as mentioned
4 earlier, the next SGP meeting will take place on March
5 4th, 2026 from 1 to 4 in Oakland. And information
6 regarding options for attending the meeting will be made
7 available closer to the March meeting date.

8 But thank you to the Panel and audience and the
9 meeting is adjourned.

10 (Thereupon the California Environmental
11 Contaminant Biomonitoring Program, Scientific
12 Guidance Panel meeting adjourned at 3:52 p.m.)

13
14
15
16
17
18
19
20
21
22
23
24
25

1 CERTIFICATE OF REPORTER2 I, JAMES F. PETERS, a Certified Shorthand
3 Reporter of the State of California, do hereby certify:4 That I am a disinterested person herein; that the
5 foregoing California Environmental Contaminant
6 Biomonitoring Program Scientific Guidance Panel meeting
7 was reported in shorthand by me, James F. Peters, a
8 Certified Shorthand Reporter of the State of California,
9 and thereafter transcribed under my direction, by
10 computer-assisted transcription.11 I further certify that I am not of counsel or
12 attorney for any of the parties to said meeting nor in any
13 way interested in the outcome of said meeting.14 IN WITNESS WHEREOF, I have hereunto set my hand
15 this 4th day of December, 2025.16
17
18
19
20
21
22
23
24
25

JAMES F. PETERS, CSR

Certified Shorthand Reporter

License No. 10063