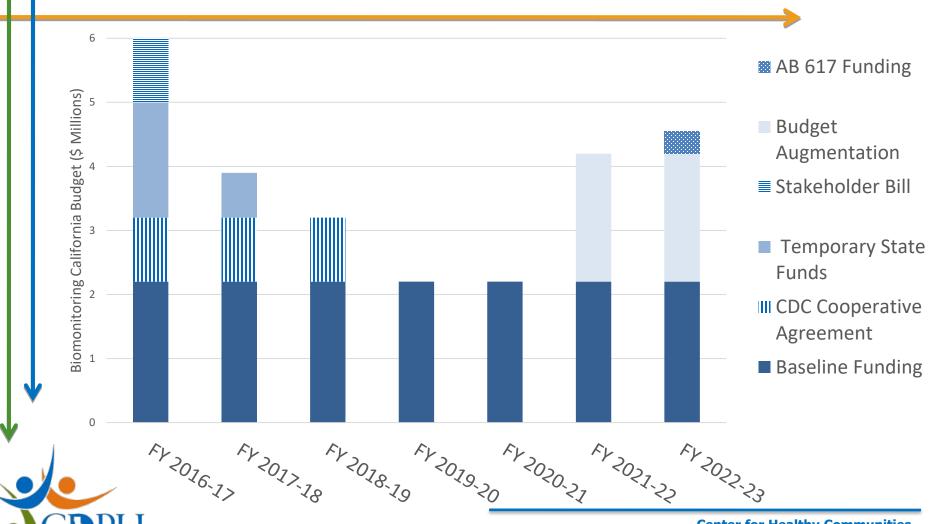
BIOM NITORING CALIFORNIA

Program Update

Kathleen Attfield, ScD
Presentation to the Scientific Guidance Panel Meeting
July 22, 2022



Overview

- Administrative updates
- Surveillance project updates
- Laboratory updates

Program budget

PublicHealth

Upcoming Biomonitoring CA positions

- Epidemiologists
 - Research Scientists I, II, IV
- Laboratorians
 - Research Scientists I, II, III
 - Research Scientist Supervisor
 - American Public Health Laboratories Fellows

See CalCareers for more information on open positions.

Staff updates

Faye Andrews*

Dinesh Adhikari

Kathleen Attfield

Hyoung Gee Baek

Paramjit Behniwal

Key-Young Choe

Sabrina Crispo Smith

Adam D'Amico

Josephine DeGuzman

Jagdish Dhaliwal

Joginder Dhaliwal

Dina Dobraca

Jeff Fowles

Qi Gavin

Songmei Gao

Ranjit Gill

Cheryl Holzmeyer

Amanda Hooker^

Sara Hoover*

Susan Hurley

Simon Ip*

Stephanie Jarmul

Duyen Kauffman

Emilie Kadhim[^]

Alveen Kumar*

June-Soo Park

Myrto Petreas

Martha Sandy

Roshni Sarala

Jianwen She

Dan Sultana

Darcy Tarrant

Miaomiao Wang

Shizhong Wang

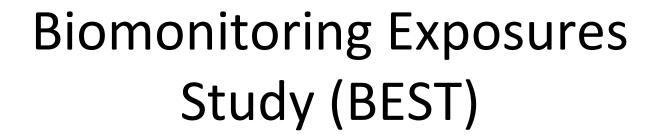
Yunzhu (Judy) Wang^

Nerissa Wu

*Departing staff, New staff

Surveillance projects updates

Biomonitoring Exposures Study (BEST)


 New initiative – weighting the data to the underlying population of the region

Central Valley

Eureka

Sacramento

San Francisco

 Collaboration with Division of Research, Kaiser Permanente Northern California (KPNC)

 Stratified random sample of adult KPNC members from the Central Valley

Los Angeles

Central Valley

Eureka

Sacramento

San Francisco

Expanded BEST

Study design	
Study period	2013
Number of participants	341
Language	English and Spanish
Targeted recruitment	Special emphasis on sampling of Hispanic and Asian/Pacific Islander KPNC members
Sample collection	KPNC lab order system

Expanded BEST demographics

Demographic characteristic	Number	Study	Central Valley	
		Percent (%)	Population Percent (%)	
18-39 years	128	37.5	42.7	
40+ years	213	62.5	57.3	
Male	161	47.2	48.8	
Female	180	52.8	51.2	
Asian	114	33.4	12.6	
Black	43	12.6	6.5	
Hispanic or Latino,	78	22.9	25.7	
English preferred language				
Hispanic or Latino,	59	17.3	9.0	
Spanish preferred language				
White	47	13.8	46.2	
Urban	232	68.0	91.7	
Rural	109	32.0	8.3	

Expanded BEST demographics

Domographic characteristic	Number	Study	Central Valley		
Demographic characteristic	Number	Percent (%)	Population Percent (%)		
18-39 years	128	37.5	42.7		
40+ years	213	62.5	57.3		
Male	161	47.2	48.8		
Female	180	52.8	51.2		
Asian	114	33.4	12.6		
Black	43	12.6	6.5		
Hispanic or Latino,	78	22.9	25.7		
English preferred language		<u> </u>			
Hispanic or Latino,	59	17.3	9.0		
Spanish preferred language					
White	47	13.8	46.2		
Urban	232	68.0	91.7		
Rural	109	32.0	8.3		

Expanded BEST chemical panels

- Metals
- Environmental phenols
- Pesticides
 - Herbicides
 - Organophosphate pesticides
 - Pyrethroids
 - Organochlorine pesticides
 - Other pesticides (i.e., DEET)

- Perchlorate
- Phthalates
- Polycyclic aromatic hydrocarbons (PAHs)
- Perfluoroalkyl and polyfluoroalkyl substances (PFASs)
- Polybrominated diphenyl ethers (PBDEs)
- Polychlorinated biphenyls (PCBs)

Examples of weighted data differences

Analyte	Units	Geometric mean and 95% confidence interval				
		Unwei	ghted	Weight	ed	
Blood mercury	μg/L	0.826	(0.731, 0.933)	0.677	(0.573, 0.799)	
Urinary mercury	μg/g creatinine	0.210	(0.181, 0.245)	0.162	(0.130, 0.202)	
Urinary arsenic	μg/g creatinine	11.8	(10.5, 13.2)	9.40	(8.25, 10.7)	

• Weighted data to be added to the Biomonitoring California website

Blood mercury

Weighted	Percentiles
----------	--------------------

	Weighted GM	(95% CI)	25tl	n 50th	75th	90th	95th
18-39 years	0.493	(0.392, 0.621)	0.22	1 0.478	0.811	1.26	1.64
40+ years	→ 0.869	(0.706, 1.07)	0.55	4 0.930	1.74	3.49	4.66
Male	0.647	(0.504, 0.830)	0.23	0.662	1.21	1.74	4.66
Female	0.706	(0.567, 0.880)	0.45	0.670	1.12	2.51	3.13
Asian	1.63	(1.18, 2.25)	0.97	1.64	4.04	7.99	8.63
Black	0.762	(0.514, 1.13)	0.43	0.478	0.951	2.14	2.77
Hispanic or Latino,	0.472	(0.374, 0.597)	0.22	7 0.675	1.15	1.29	1.26
English preferred language							
Hispanic or Latino,	0.571	(0.396, 0.824)	0.19	0.595	0.861	1.08	1.44
Spanish preferred language							
White	0.651	(0.471, 0.899)	0.28	0.696	1.41	2.51	3.49
Urban	0.685	(0.572, 0.821)	0.28	0.662	1.21	2.51	3.49
Rural	0.603	(0.428, 0.850)	0.24	0.784	1.05	1.34	1.92

Blood mercury

					Weight	ed Perce	entiles	
	Weighted GM	(95% CI)		25th	50th	75th	90th	95th
18-39 years	0.493	(0.392, 0.621)	П	0.221	0.478	0.811	1.26	1.64
40+ years	⇒ 0.869	(0.706, 1.07)		0.554	0.930	1.74	3.49	4.66
Male	0.647	(0.504, 0.830)		0.230	0.662	1.21	1.74	4.66
Female	0.706	(0.567, 0.880)		0.455	0.670	1.12	2.51	3.13
Asian	→ 1.63	(1.18, 2.25)		0.974	1.64	4.04	7.99	8.63
Black	0.762	(0.514, 1.13)		0.431	0.478	0.951	2.14	2.77
Hispanic or Latino,	0.472	(0.374, 0.597)		0.227	0.675	1.15	1.29	1.26
English preferred language								
Hispanic or Latino,	0.571	(0.396, 0.824)		0.190	0.595	0.861	1.08	1.44
Spanish preferred language								
White	0.651	(0.471, 0.899)	╝	0.283	0.696	1.41	2.51	3.49
Urban	0.685	(0.572, 0.821)		0.283	0.662	1.21	2.51	3.49
Rural	0.603	(0.428, 0.850)		0.240	0.784	1.05	1.34	1.92

CARE-LA and CARE-2 update

- Weighted data, prepping for website update
- Draft CARE report
 - Weighted and unweighted data
 - Demographic trends
 - Age, gender, race/ethnicity, income, education

CARE-3 data posted to online database

- Due to the COVID-19 emergency, field work was stopped in San Diego and Orange counties in March 2020
- 90 study participants had completed all study steps
- CARE-3 findings therefore cannot be generalized to the Region 3 population
- Chemicals measured:
 - Metals
 - PFAS
 - Environmental phenols

CARE-3 data findings

- Metals detected in almost all participants
 - In blood: lead, mercury, cadmium, and manganese were detected in >95% of participants
 - In urine: arsenic, cadmium, and mercury were detected in > 88%
 - 9 CARE-3 participants (10%) had at least one metal level over the relevant Level of Concern (LOC)

CARE-3 data findings

- At least one PFAS detected in 98% of participants
 - On average, 7 PFASs were detected in participants
 - PFOA, PFOS, and PFHxS were the most commonly detected
 PFASs (> 95% of participants)
 - Levels were similar to CARE-LA and CARE-2
 - Levels were lower than 2017-2018 NHANES

Collaborations on existing projects and data

- Evaluating whether peak intakes of PFASs were higher in California than the US general population using CARE data
 - With Stockholm University
- Informing drinking water maximum contaminant level for various PFASs using CARE Study data
 - With CA Waterboards and Boston University School of Public Health
- Examining occupational exposures within Asian/Pacific Islander projects
 - With Silent Spring Institute

Collaborations on existing projects and data

- Evaluating whether peak intakes of PFASs were higher in California than the US general population using CARE data
 - With Stockholm University
- Informing drinking water maximum contaminant level for various PFASs using CARE Study data
 - With CA Waterboards and Boston University School of Public Health
- Examining occupational exposures within Asian/Pacific Islander projects
 - With Silent Spring Institute

New surveillance work:

Employing maternal serum samples from the Genetic Disease Screening Program

- Lab capacity for 500 samples per year
- Reviewing PFASs literature
- Consulting with PFASs researchers
- Assessing budgeting, timeline, and logistical constraints
- Assessing potential to address different surveillance questions

New surveillance work

- Planning stages
 - Focus on PFASs and time trend questions first
 - Exploring an alternate year design
 - Make use of banked (low volume) versus non-banked (higher volume) samples
 - Allows retrospective analyses (banked)
 - Allows non-targeted analyses and/or other analytes (non-banked)

New surveillance work

	Years	Total Number	Samples with PFAS analyses	Geography
	2012	460	200	San Diego/Orange counties
	2015	540	292	Los Angeles; Riverside/San Bernardino; Alameda/Contra Costa; Northern counties
,	2016	300	96	Southern counties; SF/Central Coast; North Bay

New surveillance work

Gaining permissions

- Amendment to prior CPHS IRB application
- Amendment to prior Biobank request
- Vital Statistics application

CDPH Environmental Health Laboratory Updates

- Method development in progress
 - VOC metabolites
 - Mercury speciation
 - PAHs transferring to a new analytical platform,
 from high resolution GC/MS to
 GC/QQQ: 7010B Quadrupole MS/MS with Agilent 8890 GC
 System

CDPH Environmental Health Laboratory Updates

- Untargeted analyses
 - Unknown parent compounds in blood and environmental samples
 - New instrument Agilent 7250 GC/Q-TOF
 - Unknown metabolites in urine
 - Training new staff to use HPLC / Q Exactive Plus

CDPH Environmental Health Laboratory Updates

- Untargeted analyses
 - Mainly for the analysis of unknown parent compounds in blood and environmental samples (Installation of Agilent 7250 GC/Q-TOF; new instrument)
 - Mainly for the analysis of unknown metabolites in urine (training new staff to use HPLC / Q Exactive Plus)

CDPH Environmental Health Laboratory updates

- Method development in progress
 - VOC Metabolites
 - Mercury speciation
 - PAHs
- New instruments
 - 7010B Quadrupole MS/MS EI with Agilent 8890 GC System
 - Analysis of OH-PAHs in urine; will shorten analysis time
 - Gerstel Workstation / Liquid Handler
 - Automation for existing liquid-liquid extraction procedures
 - Agilent 7250 GC/Q-TOF
 - Analysis of unknowns in urine

DTSC Environmental Chemistry Lab updates

- Siloxanes
 - Initiated method development of 4 siloxanes (D3, D4, D5, D6)
 - GC-MS/MS and SPME (solid phase micro-extraction) sampling system.
- Completed migration of legacy method of 12 PFASs to newer instrument
 - Decreased injected sample volume
 - Decreased analysis time by 50%
 - Method validated and added to ISO17025 accreditation

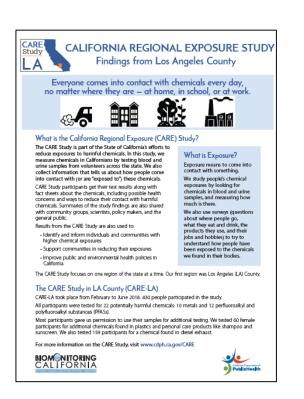
DTSC Environmental Chemistry Lab updates

- In progress: additional optimization of extended PFASs method
 - Increased number of analytes tested (43)
 - Short chain PFCAs (PFBA and PFPeA)
 - Long chain PFCAs (PFTrA and PFTeA)
 - New Generation compounds (Gen-X, ADONA, F53B)
 - new additions to CDC NHANES
 - Additional compounds (PFECHS, 10:2 FtS, PFDPA, FBSA, FDUEA, N-AP-FHxSA)

DTSC Environmental Chemistry Lab updates

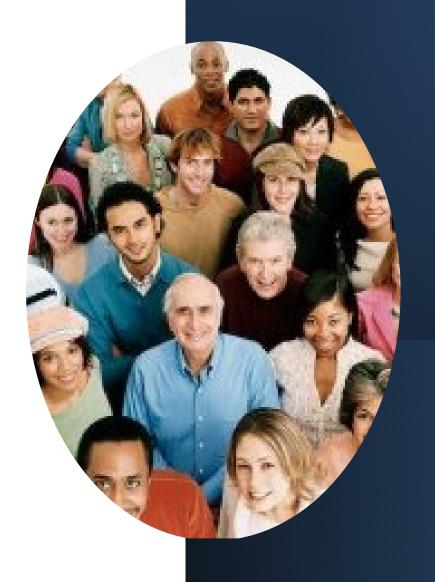
- In progress: non-targeted analysis in plasma by using minimal modification from serum method
 - Pilot results from five paired serum and plasma samples show plausibility of approach

Website updates


Designated chemicals list Chemical groups added:

- Aldehydes
- Aromatic amines
- Aromatic diamines
- Sex steroid hormones and binding protein
- Volatile N-nitrosamine compounds

Other additions


- Several VOCs
- Several pesticides
- Nickel
- Updated PFAS definition footnote
 - Also updated in Priority Chemicals list

CARE-3 data CARE-LA lay-friendly study summary

Questions from SGP and public?

Thank you to participants, collaborating organizations, and staff!

Questions for the Panel

 How can the program convey the utility of the new weighted data to stakeholders and other researchers?

 How can the program expand the impact of findings for communities and other stakeholders?

Questions for the Panel

What are the panel's suggestions for expanding collaborations on existing projects and data? Example topics:

PFASs

- PFAS profiles (12-32 PFASs)
 associated with different
 exposure sources
- Differences by race/ethnicity and country of origin

Phenols

Racial or ethnic differences

Metals

Providing better guidance for avoiding arsenic exposures

Mixtures analyses

Up to 14 panels per participant in BEST