Preliminary Screening Information on Possible Classes of Chemicals used in UV Applications

Laurel Plummer, PhD
Office of Environmental Health Hazard Assessment

Presentation to the Scientific Guidance Panel
November 3, 2016
Purpose of agenda item

- Discuss two possible classes of chemicals used in UV applications*
 - Benzophenones
 - Phenolic benzotriazoles
- Obtain Panel and public input on next steps

*“UV applications” includes uses as UV stabilizers, UV absorbers, or photoinitiators, for example.
Why classes?

Evaluating chemical classes or groups, rather than individual chemicals:

- Is resource-efficient for SGP chemical selection
- Allows the Program to quickly respond to shifts in chemical use and target emerging chemicals of concern
- Facilitates development of broad lab panels for related chemicals
- Allows for non-targeted screening within a class of chemicals
Background: Criteria for recommending designated chemicals

- **Exposure or potential exposure** to the public or specific subgroups

- The *known or suspected health effects* resulting from some level of exposure based on peer reviewed scientific studies

- The *need to assess the efficacy of public health actions* to reduce exposure to a chemical

- The *availability of a biomonitoring analytical method* with adequate accuracy, precision, sensitivity, specificity, and speed

- The *availability of adequate biospecimen samples*

- The *incremental analytical cost* to perform the biomonitoring analysis for the chemical
Preliminary screen of compounds used in UV applications

Broad research on a variety of topics, including:

- Chemical identity and structure
- Use and production
- Detections in humans, biota, and the environment
- Bioaccumulation and persistence
- Toxicity information
Some other compounds used in UV applications

- \(p \)-Aminobenzoates
- Avobenzone
- Cinnamates
- Salicylates
Benzophenones: Example chemicals

Benzophenone-3 (BP-3)

Benzophenone (BP)

Benzophenone-4 (BP-4)

Benzophenone-12 (BP-12)
US production/import volume

<table>
<thead>
<tr>
<th>Chemical</th>
<th>2012 volume (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzophenone-3 (BP-3)</td>
<td>100K – 500K</td>
</tr>
<tr>
<td>Benzophenone</td>
<td>3.9M</td>
</tr>
<tr>
<td>4-Methylbenzophenone</td>
<td>Withheld</td>
</tr>
<tr>
<td>Benzophenone-1 (BP-1)</td>
<td>32K</td>
</tr>
<tr>
<td>Benzophenone-4 (BP-4)</td>
<td>Withheld</td>
</tr>
<tr>
<td>Benzophenone-12 (BP-12)</td>
<td>2M</td>
</tr>
</tbody>
</table>
Biomonitoring studies

- Detections of parent compounds and/or biomarkers in urine:
 - BP-3, BP, BP-1, BP-2, BP-4, BP-8

- Detections in other biospecimens:
 - Placental tissue: BP-4
 - Serum, breast milk, adipose tissue: BP-3
Some toxicity information

- BP listed under Proposition 65 as known to the state to cause cancer
- Several benzophenones, including BP-3, show indications of endocrine activity (estrogenic, anti-estrogenic, anti-androgenic)
- Selected ToxCast™ bioactivity for benzophenones tested included effects on:
 - Endocrine activity
 - Cell viability
 - Cellular metabolism
 - Immune- and inflammation-related endpoints
Phenolic benzotriazoles: Example chemicals

UV P

UV 234

UV 328
US production/import volume

<table>
<thead>
<tr>
<th>Chemical</th>
<th>2012 volume (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV P</td>
<td>605K</td>
</tr>
<tr>
<td>UV 234</td>
<td>1M - 10M</td>
</tr>
<tr>
<td>UV 326</td>
<td>394K</td>
</tr>
<tr>
<td>UV 327</td>
<td>Withheld</td>
</tr>
<tr>
<td>UV 328</td>
<td>2.2M</td>
</tr>
<tr>
<td>UV 329</td>
<td>500K - 1M</td>
</tr>
</tbody>
</table>
LogK\textsubscript{ow} and bioconcentration factor (BCF)

<table>
<thead>
<tr>
<th>Chemical</th>
<th>LogK\textsubscript{ow}</th>
<th>BCF (L/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV P</td>
<td>4.31 (exp)</td>
<td>324.1</td>
</tr>
<tr>
<td>UV 234</td>
<td>7.67</td>
<td>3,741</td>
</tr>
<tr>
<td>UV 326</td>
<td>5.55</td>
<td>1,283</td>
</tr>
<tr>
<td>UV 327</td>
<td>6.91</td>
<td>10,160</td>
</tr>
<tr>
<td>UV 328</td>
<td>7.25</td>
<td>6,006</td>
</tr>
<tr>
<td>UV 329</td>
<td>6.21</td>
<td>5,843</td>
</tr>
</tbody>
</table>

Evidence for persistence: LogK\textsubscript{ow} ≥ 4
Evidence for bioaccumulation: BCF > 1,000
Biomonitoring study: Breast milk

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Detection Frequency (%)</th>
<th>Average ± SD (ng/g)</th>
<th>Maximum (ng/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV P</td>
<td>13</td>
<td>19.2 ± 60.1</td>
<td>374</td>
</tr>
<tr>
<td>UV 326</td>
<td>9.1</td>
<td>1.77 ± 7.09</td>
<td>53.1</td>
</tr>
<tr>
<td>UV 327</td>
<td>29</td>
<td>10.0 ± 19.0</td>
<td>95.5</td>
</tr>
<tr>
<td>UV 328</td>
<td>98</td>
<td>64.3 ± 66.4</td>
<td>334</td>
</tr>
<tr>
<td>UV 329</td>
<td>8.7</td>
<td>4.54 ± 19.5</td>
<td>178</td>
</tr>
</tbody>
</table>

For comparison:

| Tonalide (synthetic musk) | 54 | 65.1 ± 84.9 | 350 |

Lee et al. 2015
Detections in biota

- Dolphin plasma
- Porpoise blubber
- Aquatic organisms (fish, mussels, and other)
Some toxicity information

- NTP studies underway on several chemicals in this class
- A few phenolic benzotriazoles show indications of:
 - Anti-androgenic activity
 - Aryl hydrocarbon receptor (AhR) pathway activation
- Selected ToxCast results for phenolic benzotriazoles tested included effects on:
 - Endocrine activity
 - AhR pathway activation
 - Xenobiotic metabolism
 - Cell proliferation
 - Immune- and inflammation-related endpoints
Options for the Panel

The SGP could:

- Request that OEHHA prepare a potential designated chemical document on one or both of these classes
- Propose further screening or continued tracking of the classes
- Advise no further action on either classes
- Suggest other classes for possible consideration