Challenges in biomonitoring exposure to diesel exhaust Melanie Marty, Ph.D. OEHHA

Outline

- Why are we concerned about diesel exposure?
 - Diesel as a Toxic Air Contaminant (TAC)
 - Diesel as part of ambient particulate matter (PM)
 - Exposures in California
- What is in diesel engine exhaust?
 - Composition changes
- What are the characteristics of a good biomarker?
- What are the complications inherent in trying to find a good biomarker for diesel engine exhaust exposure?

Very Brief History

- IARC 2A carcinogenicity: animals sufficient, humans limited (1989)
- HEI (1995), WHO (1996): epidemiological data consistent in showing weak association
- California identified diesel exhaust particulate (DEP) as TAC (1998) noting evidence consistent with causal association with lung cancer
- IARC Group 1: sufficient evidence for carcinogenicity in humans based on lung cancer (2012)

Health Effects of Diesel Exhaust

- Increased lung cancer risk observed in numerous studies of diesel exhaust-exposed workers (primary basis for listing as a Toxic Air Contaminant).
- Targets of toxicity include respiratory and immune systems.
- Enhanced allergic response in humans exposed to DEP directly.
- Pulmonary inflammatory changes and changes in cardiovascular measures observed after controlled exposures of human volunteers.
- Increased incidence of COPD in workers with long term exposure.

Diesel Exhaust Particulate is a Component of Ambient PM2.5

Consistent associations of ambient PM2.5 with:

- Daily and long-term cardiopulmonary mortality
- Hospital and emergency room visits for cardiac and respiratory illness
- Acute and chronic respiratory symptoms
- Lung function decrements and decreased lung function growth in children
- School absenteeism
- Medication use and symptoms in asthmatics

OEHHA's 1998 Meta-analysis – TAC program

Figure C-3: Estimates of Relative Risks for Smoking-Adjusted Studies of Diesel Exhaust Exposure and Lung Cancer

Epidemiological Studies Included

Select risk estimates from more recent studies

Study	Risk
Garshick et al (2004)	railroad workers lung cancer relative risk (RR) = 1.40 (95% CI = 1.30 - 1.51).
Laden et al (2006)	Railroad workers hired post-1945, lung cancer RR = $1.77 (95\% \text{ CI} = 1.50 - 2.09)$, dose-response relationship with exposure duration
Garchick et al (2008)	Long-haul truck drivers employed 20 yrs, smoking-adjusted lung cancer HR = $1.40 (95\% \text{ CI} = 0.88 - 2.24)$; pickup/delivery drivers employed 20 yrs, smoking-adjusted lung cancer HR = 2.21 (95% CI = 1.38 - 3.52).
Vermuellen et al (2014)	meta-analysis of 3 cohort studies - "approximately 6% of annual lung cancer deaths may be due to DEE exposure".
Laden et al (2006)	COPD OR = 1.61 (95% CI = $1.12-2.30$) for engineers or conductors who had worked \geq 16 years after 1959

Diesel Quantitative Cancer Risk Assessment for TAC Identification

- OEHHA staff included bracketing assumptions about historical exposures of railroad workers
- 95% UCL risks estimated ranged from 1.3 X 10⁻⁴ to 2.4 x 10⁻³ [per μ g DEP/m³]
- Subject to extensive public scrutiny and approved by State's Scientific Review Panel (SRP).
- Best value of 3 x 10⁻⁴ [per µg DEP/m³] (SRP)

"Form" of the Listing as a TAC

- Diesel exhaust is a complex mixture of gases, aerosolized liquids, and fine particles
- Particulate matter and vapor phase emissions most likely contribute to adverse health effects, including cancer
- CARB listed "particulate matter from diesel fueled engines" as a Toxic Air Contaminant, although the health effects assessment was based on exposure to the mixture.
 - Enabled a measurement of diesel emissions and ambient air concentrations to be made
 - Help to monitor results of diesel emissions reductions strategies

Ambient DEP Concentrations (1998)

Location	Concentration
Various U.S.	1 - 3 μg/m ³
California	0.2 - 3.6 μg/m ³
Austria	11 µg/m ³
Urban hotspots	up to 15 µg/m ³
Occupational	Several µg/m³ to >1 mg/m³

Source: CARB, 1998

Statewide Diesel PM2.5 Emissions

Source: CARB, 2012

CalEnviroScreen2.0¹

Exposure Indicator: Diesel Particulate Matter

- Diesel PM emissions (kg/day) from on-road and non-road sources for a 2010 summer day in July.²
- Emissions estimated for a 4km by 4km statewide grid which was then converted to census tracts.
- Raw data and calculated percentiles for individual indicators for individual census tracts available.³

1. CalEnviroScreen2.0 <u>http://www.oehha.ca.gov/ej/ces2.html</u>

2. Data source: California Air Resources Board

3. Data file: www.oehha.ca.gov/ej/pdf/CalEnviroScreen_v2oFINAL_latlong_ecs.xlsx

Southern California

Cities with census tracts in the top 10% for diesel pollution fall within the following **counties**--

- Los Angeles County/Long Beach, City of Los Angeles, San Pedro, Bell, Glendale, Inglewood, plus <u>17</u> other cities
- **Riverside County**/ Riverside, Corona, Mira Loma
- Orange County/Seal Beach, Los Alamitos

• San Bernardino/Ontario, Rancho Cucamonga, Fontana, Upland 13

Central Valley

Cities with census tracts in the top 10% for diesel pollution fall within the following **counties**--

- Fresno County/Fresno
- Kern County/Bakersfield
- Merced County/Merced

San Francisco Bay Area

Cities with census tracts in the top 10% for diesel pollution fall within the following **counties**--

- Alameda County/ Alameda, Oakland, Emeryville, Hayward, Berkeley
- San Francisco/ San Francisco (downtown)

Diesel Exhaust Constituents

- Gases
 - CO, NOx, SOx, large number of VOCs (e.g., formaldehyde, 1,3-butadiene)
- Particles >90% are <1 μ diameter
 - Inorganic Elemental carbon, metals
 - Organic Many thousands of semi-volatile compounds adsorb to particle surfaces (15 - 65% of particle mass); includes PAHs and PAH derivatives (e.g., nitro-, oxy-, keto-, quinones), other products of incomplete combustion (PICs)
- Which are the key to observed adverse health effects?

Good Biomarker

- Somewhat unique to the substance/mix being measured to avoid major confounding by other sources
- Consistent quantitative relationship with external exposure measures
- Reliably measurable with reasonable analytical methodology
- Useful at low levels of exposure (especially for community monitoring)
- Low inter-individual variability in pharmacokinetics

Many Risk Management Actions Taken by ARB to Address Diesel Exhaust Emissions

Changes in Fuels

- In 2006, CARB regulations phased in "low sulfur" fuel (15 ppm S; down from 50 ppm and 500 ppm)
- CARB diesel also had lower aromatic content and CARB set lubricity standards
- CARB diesel decreased emissions of PM (mass), NOx, PAH, nitro-PAH, and many other constituents (total hydrocarbons)

Changing fuels and other controls influences emissions

- Relative amounts of various constituents change with engine, fuel type and mixing ratio, engine load
- Fuels changing beyond "CARB diesel"
 - Biodiesel
 - Blends of petrol-based and biodiesel
 - "Renewable" diesel
- Number of studies evaluating changes in constituents with the changing fuels present a complex picture
- Complicates finding a good biomarker or exposure

Biomarker Candidates Most

Explored

- Urinary excretion of parent or metabolites of a number of PAHs and oxy-PAHs
- Carbonyls such as formaldehyde and other aldehydes
- Specificity problem, lots of confounders for most of the candidates including tobacco smoke, cooking foods, other fuel combustion
- Short half lives of urinary metabolites a possible problem for infrequent exposures (less so for occupational exposure)
- Inter-individual variability in metabolite production complicates use of urinary metabolites as a biomarker for general population exposure

Biomarkers explored

- Nitro-PAHs may be another route to a biomarker, e.g. urinary metabolites of 1-nitropyrene, found especially in diesel exhaust, less so in other sources
- Dr. Chris Simpson will discuss his methods and results using a number of hydroxylated metabolites of 1nitropyrene as potential biomarkers for diesel exhaust exposure

Potential Biomarkers

- Other possibilities include hemoglobin or other circulating protein adducts with diesel-exhaust specific compounds
- Generally longer half-lives of adducts than urinary metabolites a benefit
- Specificity still an issue with a number of potential adduct biomarkers
- If need a blood draw, more invasive and more expensive than collecting urine

No "Grand Slams" yet