Biomonitoring Exposures Study (BEST): Results for Urinary and Blood Metals

Presentation to the Scientific Guidance Panel Meeting November 8, 2018

Jennifer Mann, Ph.D.

Research Scientist IV
Center for Healthy Communities
California Department of Public Health

HISTORY

- Sample of adult Kaiser Permanente members
 - Sacramento

Merced

Yolo

San Joaquin

Madera

- Stanislaus
- Fresno
- Pilot (2011-2012)
 - N=112 participants
 - I 10 blood samples; 108 urine samples
- Expanded (2013)
 - Oversampled Hispanics; Asian/Pacific Islanders (API)
 - N=315 blood samples; 218 urine samples

CHARACTERISTICS OF PARTICIPANTS

Characteristic	Pilot	Expanded
Age (mean/sd)*	56.3(15.2)	48.2 (17.2)
% Male	55	47
% Rural*	8.3	32
% Prefer Spanish language*	3.6	17
Race/Ethnicity * % Black % API % Hispanic % White	29 18 18 36	13 33 41 14
% High school graduates	89.5	90.6

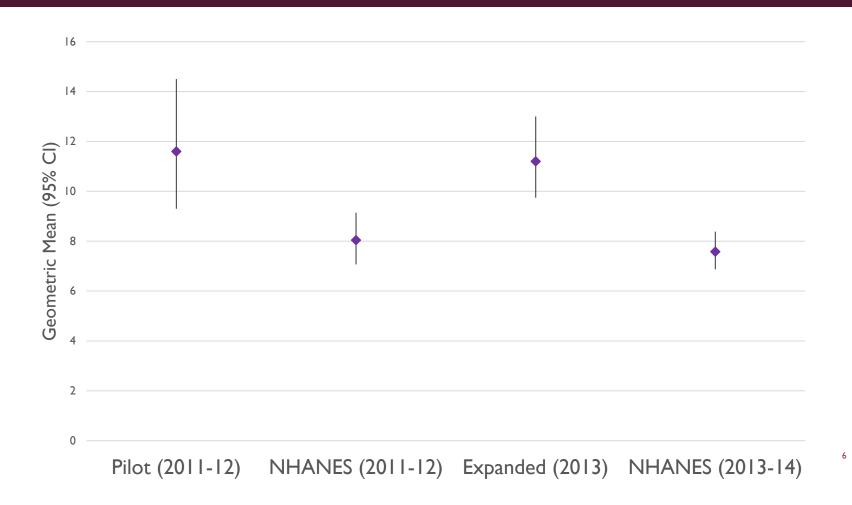
BIOMONITORING EXPOSURES STUDY

■ Part I:

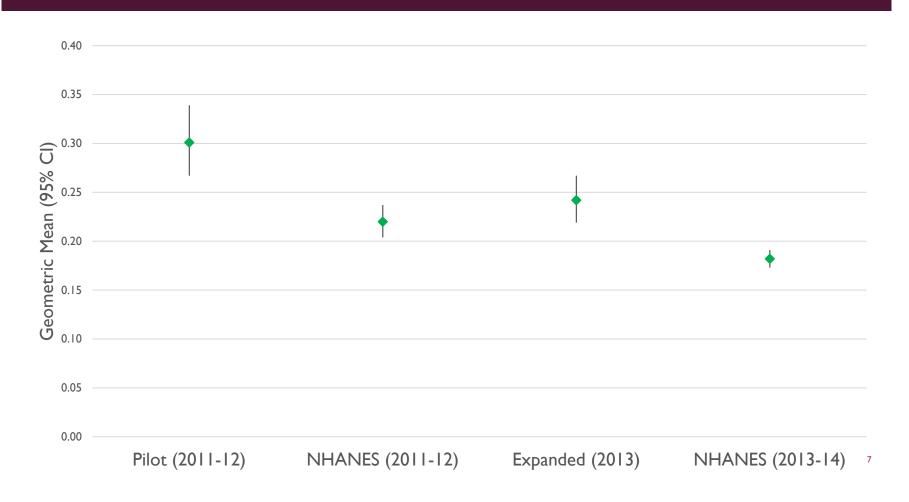
- Geometric Mean levels in Pilot and Expanded phases of BEST
- Comparison with National Health and Nutrition Examination Survey (NHANES)

■ Part II

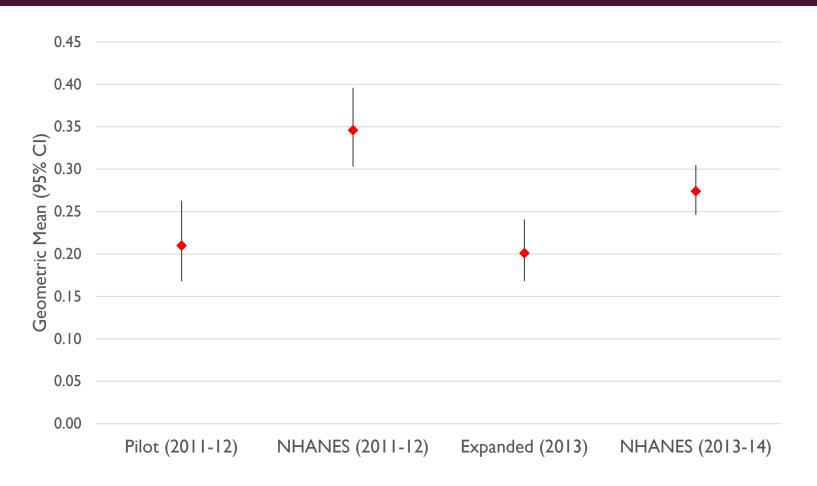
Predictors of urinary and blood metal concentrations in Expanded BEST

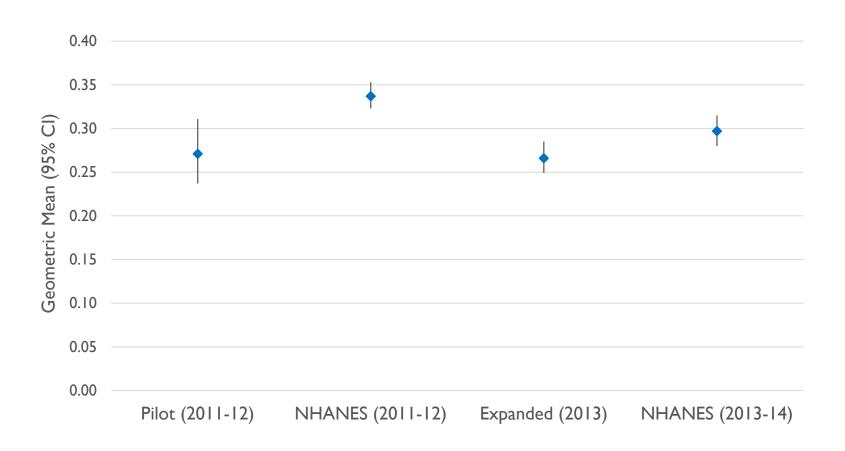

METALS ANALYZED

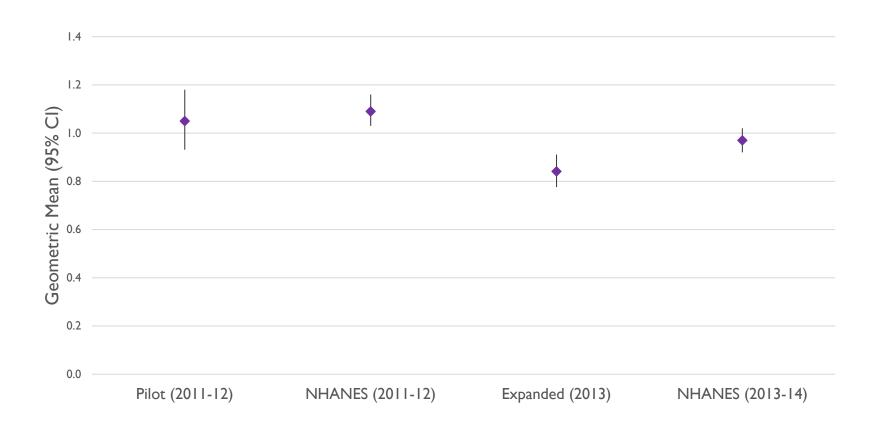
- Urinary Metals
 - Arsenic
 - Cadmium
 - Mercury
 - Cobalt
 - Manganese
 - Molybdenum
 - Thallium
 - Tungsten
 - Uranium


Pilot and Expanded BEST Expanded BEST

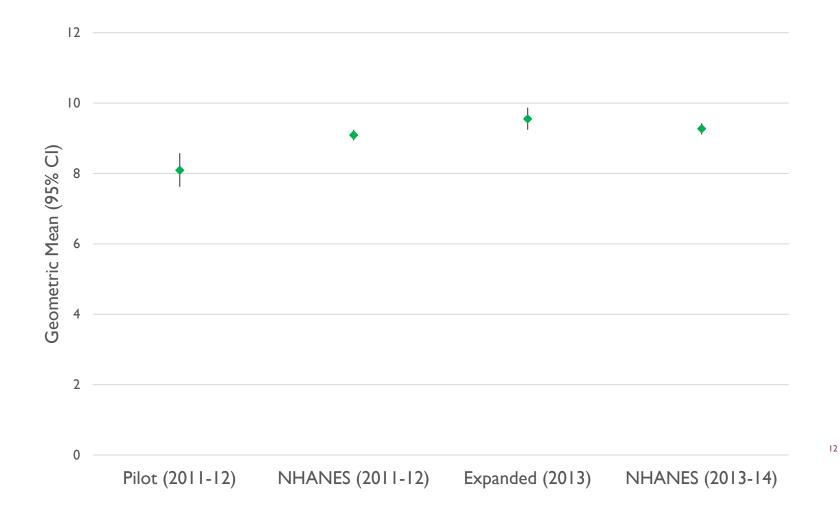
- Blood Metals
 - Cadmium
 - Lead
 - Manganese
 - Mercury


Total Urinary Arsenic (µg/L)


Urinary Cadmium (creatinine-adjusted) µg/g


Urinary Mercury (µg/L)

Blood Cadmium (µg/L)


Blood Lead (µg/dL)

Blood Mercury (µg/L)

Blood Manganese (µg/L)

PREDICTION MODELS FOR URINARY AND BLOOD METALS

EXPANDED BEST

EXPANDED BEST: URINARY METALS (N=218)

Metal	Detection Frequency	GM [#] Expanded BEST (μg/L)	GM NHANES 2013-2014 (μg/L)
Arsenic	100%	11.2*	7.58
Cadmium ⁴	93%	0.24*	0.18
Cobalt	99%	0.19	0.37*
Manganese	60%	ND	ND
Mercury	94%	0.20	0.27*
Molybdenum	100%	46.7*	30.8
Thallium	99%	0.18*	0.14
Tungsten	96%	0.08*	0.05
Uranium	86%	0.008*	0.005

^{#:} GM=Geometric Mean; ^creatinine-adjusted (μ g/g) * p<.05

BLOOD METALS (N=315)

	Detection Frequency	Expanded BEST GM	NHANES 13-14 GM
Cadmium (µg/L)	100	0.27	0.30
Lead (µg/dL)	100	0.84	0.97*
Manganese (µg/L)	100	9.55	9.27
Mercury (µg/L)	99.7	0.83	0.81

VARIABLES IN PREDICTION MODELS

Same variables in every model

- Sex
- Age Category (10-year)
- Race/Ethnicity
 - Asian/Pacific Islander
 - Hispanic
 - African-American
 - White (ref)

- Diet: grains, fresh and canned fish, vegetables and fruit
- Time in U.S.
- Educational Level
- Smoking Status
- Rural residence

STATISTICAL ANALYSIS

- Percent increase or decrease
 - Relative to reference group (categorical variables)
 - I-day/wk increase in consumption (diet)
- Test for trend:
 - Age group
 - Smoking status
 - Time in U.S.
 - Educational level

EXPLANATORY POWER OF MODELS (R²) (%)

	URINE (N=218)	BLOOD (N=315)
Total Arsenic	17	
Cadmium (creatinine-adjusted)	52	36
Cobalt	16	
Lead		42
Manganese	Low DF	23
Mercury	19	35
Molybdenum	19	
Thallium	18	
Tungsten	17	
Uranium	22	

RACE/ETHNICITY

% Difference (95% CI)

Metal	API	African- American	Hispanic
Blood Mercury	63% (13 to 136)	-14% (-14 to -3)	
Urinary Mercury	145% (134 to 350)	193% (41 to 507)	104% (108 to 286)
Total Arsenic	76% (7 to 188)	102% (12 to 265)	
Molybdenum			70% (2 to 185)
Tungsten			130% (16 to 345)

Reference group was white participants. Adjusted for sex, age group, education level, time in U.S., and smoking status. All items listed are statistically significant (p<.05).

DIET % Difference (95% CI)

Metal	Fresh Fish	Canned Fish	Fresh Fruit	Canned Fruit
Blood Mercury	23% (13 to 34)	17% (4 to 32)		
Total Arsenic	12% (0.4 to 26)			
Thallium		-12% (-22 to 0)	19% (1 to 39)	
Cobalt				21% (5 to 64)

Adjusted for sex, age group, race/ethnicity, education level, time in U.S., and smoking status. All items listed are statistically significant (p<.05)

- Relative concentration for an increase of I day/week
- Grains, fresh and canned vegetables and fresh fruit were not associated with increased levels of any of the metals in Expanded BEST
- The BEST study did not include a specific question about rice consumption

GENERATION/TIME IN U.S.

- Born in U.S. (Y/N). (Ref)
- If not born in U.S., years lived here:
 - >=25 years
 - **16-25**
 - II-I5 years
 - ≤10 years
- Uranium levels **decrease** with time in U.S. (test for trend, p=0.05)

URBAN OR RURAL ADDRESS

- Geocoded as rural or urban
 - Census definition: based on population density and/or land use designations
 - Possible proxy for private well water use
- Participants from rural areas were higher in :

	Molybdenum	44% (8 to 92	p=0.04
_	i ioiybaciiaiii	11/0 (0 to /2	, , , , , , , , , ,

■ Blood Manganese 7% (0 to 15) p=0.06

SUMMARY / CONCLUSION

- Many of the metals added to the urinary panel for Expanded BEST were higher than in NHANES
- Elevated metal concentration in non-white groups even after adjustment for other predictors.
 - Asian/PI special group of interest
 - One motivation for Asian/Pacific Islander Community Exposures (ACE)
 Project
- Elevated levels of urinary molybdenum, thallium, uranium, and blood manganese in rural participants
 - Reason for higher levels still need to be explored

BEST: WORKS IN PROGRESS

- Journal articles:
 - Urinary and blood metals
 - Perfluorinated compounds
- New student project

ACKNOWLEDGEMENTS

- Kaiser Permanente Division of Research, Northern California
 - Stephen Van Den Eeden
 - Jun Shan
 - Amethyst Leimpeter
 - All Biomonitoring California staff who contributed to Pilot and Expanded BEST
 - BEST was funded under CDC cooperative agreement U88EH000481