Trends of Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) and Persistent Organic Pollutants (POPs) in Pregnant Californians

> Dina Dobraca Scientific Guidance Panel Meeting July 19, 2024

Surveillance Feasibility

- Aim of surveillance is to determine population-level estimates
 - Temporal trends
 - Geographic differences
 - Demographic subgroups
- Feasibility of using prenatal samples from Genetic Disease Screening Program

GDSP: Prenatal Screening Program

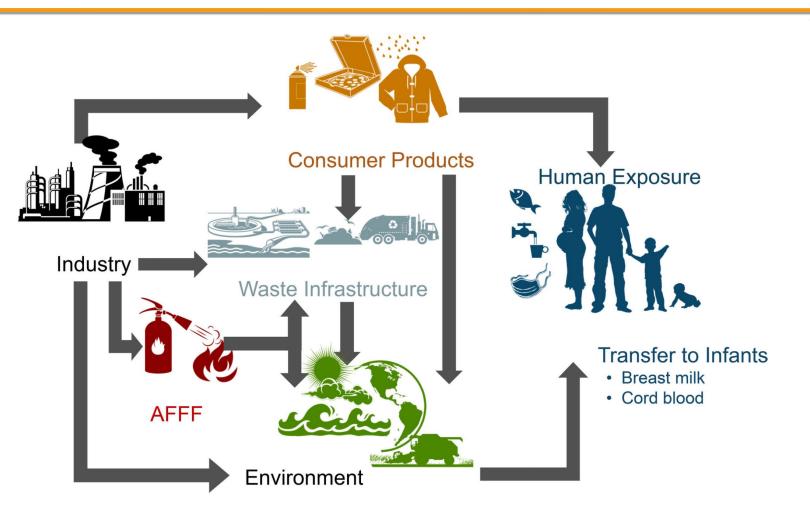
- Offered by prenatal care providers to all pregnant individuals in California
- Blood samples are drawn to screen for certain birth defects
- Second trimester samples are collected between
 15 weeks 0 days and 20 weeks 0 days gestational age
- About 70% of pregnant Californians participate in prenatal screening
- Standardization of sample collection methods across the state

California Biobank Program

- GDSP archives prenatal samples from Fresno, Kern, Kings, Madera, Tulare, Orange, and San Diego counties
- Non-Biobank samples are typically discarded after one month, but can be saved upon request

Measuring Analytes in Maternal Archived Samples (MAMAS)

Study Design


	Sample Collection	Sampling Timeframe	Sampling Method
MAMAS 1	Archived	2012 (12-months)	 Race-stratified random sampling: Equal number of Asian (limited to Chinese, Filipina, Vietnamese), Black, Hispanic, and White participants
MAMAS 2	Prospective	September 2015 - April 2016	 Region-stratified sampling with quota-based sampling by race/ethnicity: Equal number of Asian (limited to Chinese, Filipina, Vietnamese), Black, Hispanic, and White participants
MAMAS 3	Prospective	July 2016 - January 2017	 Region-stratified sampling with quota-based sampling by race/ethnicity: Equal number of Asian (limited to Chinese, Filipina, Vietnamese), Black, Hispanic, and White participants

Subsamples for Analysis

	# of Samples	Collection Dates	Geography	Subsamples for Analysis
MAMAS 1	460	2012	San Diego/Orange Counties	PFASs (n=200) POPs (n=58)
MAMAS 2	540	2015-2016	Northern Counties Alameda/Contra Costa Los Angeles County Riverside/San Bernardino	PFASs (n=292) POPs (n=245)
MAMAS 3	300	2016-2017	North Bay San Francisco/Central Coast Southern Counties	PFASs (n=96) POPs (n=204)

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) Persistent Organic Pollutants (POPs)

Perfluoroalkyl and polyfluoroalkyl substances PFASs

Sunderland, E.M., Hu, X.C., Dassuncao, C. *et al.* A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. *J Expo Sci Environ Epidemiol* **29**, 131–147 (2019).

Questions

- Does PFAS exposure vary by demographic characteristics?
- What are the trends in California residents' exposures to PFASs?

Demographics Characteristics of PFAS Subsample

	MAMAS 1 2012		MAMAS 2 2015-2016			
	Ν	%	N	%	N	%
Race/ethnicity						
White	50	25	76	26	24	25
Black	50	25	66	23	24	25
Hispanic	50	25	65	22	24	25
Chinese	17	9	33	11	9	9
Filipina	15	8	30	10	8	8
Vietnamese	18	9	22	8	7	7

Demographics Characteristics of PFAS Subsample

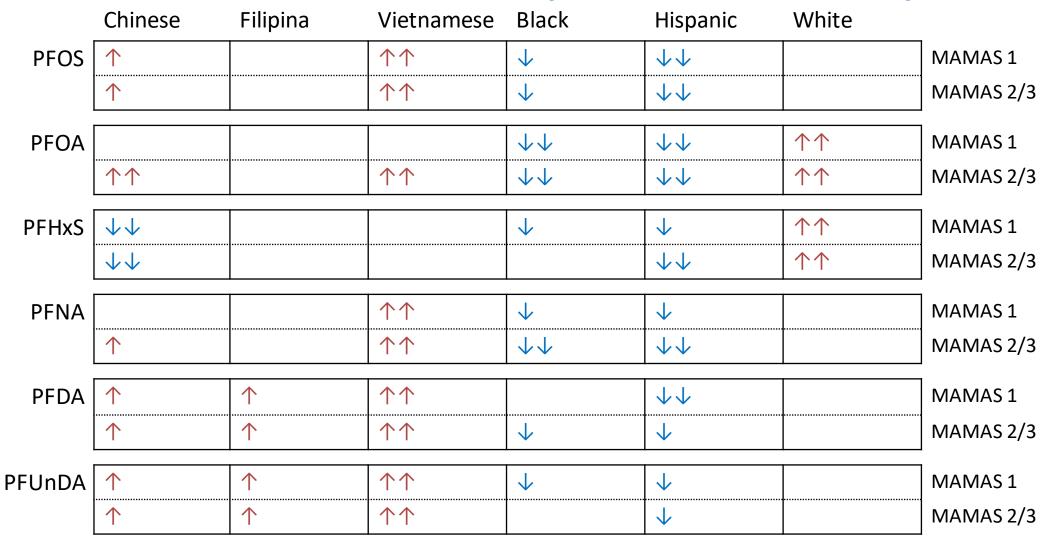
	MAMAS 1 2012		MAMAS 2 2015-2016		MAMAS 3 2016-2017	
	Ν	%	Ν	%	Ν	%
Medi-Cal						
Yes	59	30	83	28.4	28	29.2
No	141	71	209	71.6	68	70.8
Age, years						
<15	0	0	1	0	0	0
15-19	7	4	11	4	5	5
20-24	29	15	46	16	15	16
25-29	56	28	76	26	17	18
30-34	68	34	102	35	35	37
35-39	31	16	45	15	19	20
40-44	8	4	10	3	5	5
≥45	1	1	1	0	0	0

PFAS Detection Frequencies in MAMAS 1-3

- Of the 11 PFASs measured in MAMAS 1, seven PFASs were measured in > 65% samples

 PFOS, PFOA, PFHxS, PFNA, PFDA, PFUnDA, Me-PFOSA-AcOH
- Of those 11 PFASs, in MAMAS 2 and MAMAS 3, six PFASs were measured in > 65% samples

 PFOS, PFOA, PFHxS, PFNA, PFDA, PFUnDA
- Highlighted PFASs detected in all samples
- Subsequent slides will focus on the six PFASs detected in > 65% MAMAS 1-3 samples

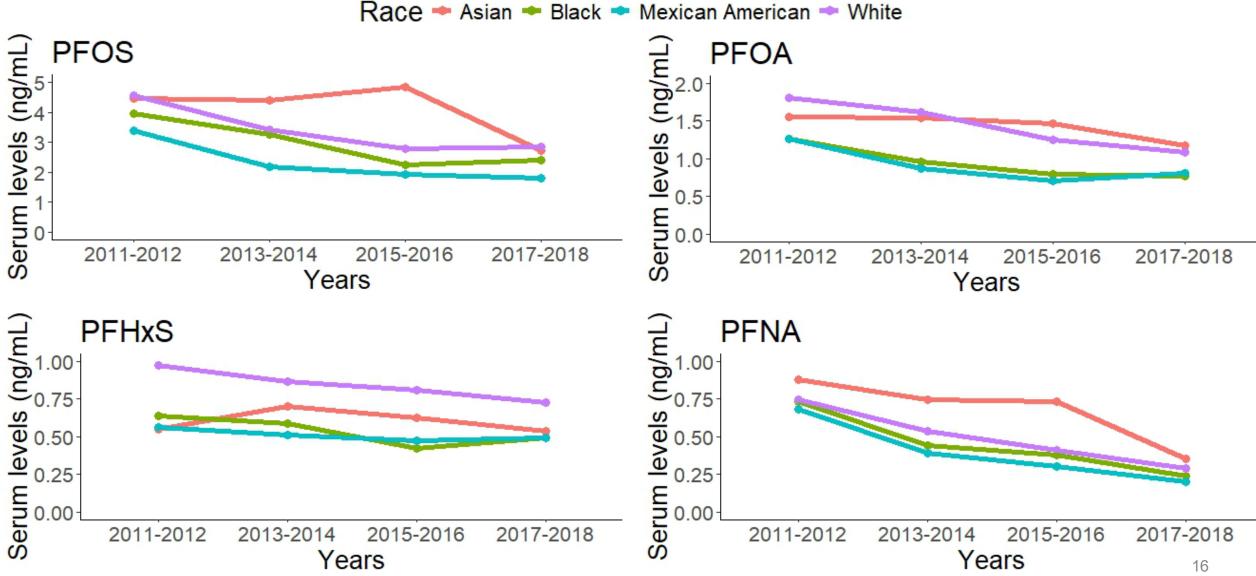


PFAS Levels by Age and Medi-Cal Insurance

- No association between age and PFAS levels
- Medi-Cal insurance and PFAS levels
 - In MAMAS 1
 - Lower PFAS levels among those with Medi-Cal insurance for all PFASs
 - In MAMAS 2 & MAMAS 3
 - No association between Medi-Cal and PFOS, PFOA, and PFHxS, respectively
 - Lower levels among those with Medi-Cal for all other PFASs

PFAS Levels by Race/Ethnicity

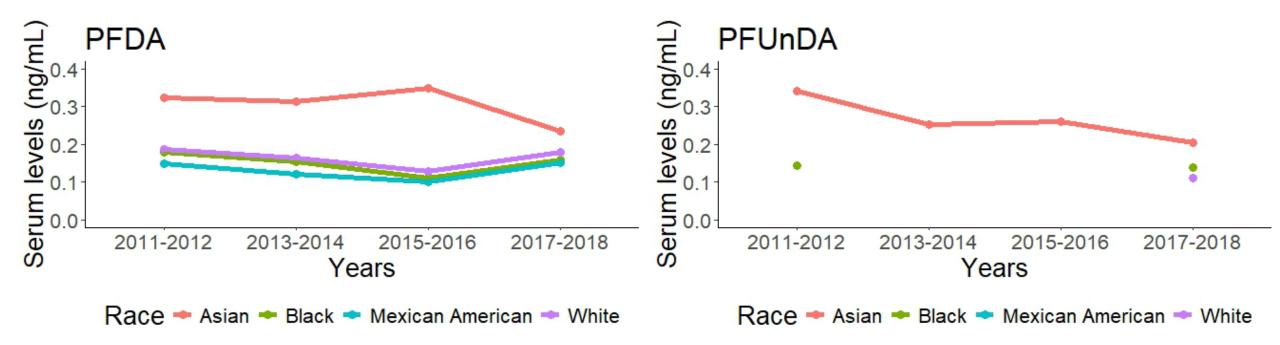
Legend $\uparrow \uparrow$ highest geometric mean and significantly different from other race/ethnic groups $\downarrow \downarrow$ lowest geometric mean and significantly different from other race/ethnic groups


↑ higher geometric mean (not statistically significant) 14
 ↓ lower geometric mean (not statistically significant)

Summary of PFAS Levels by Race/Ethnicity

- Hispanic participants had lower exposures across PFAS analytes
- For each PFAS, different relative levels by race/ethnicity
- Collapsing Asian ethnicities to an overall Asian category masks highly exposed Vietnamese participants

National Trends in PFAS Levels

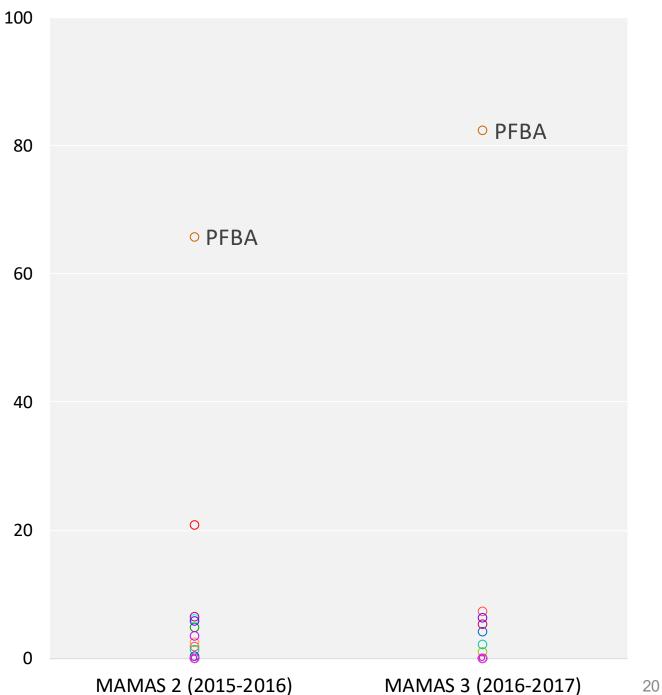


National Health and Nutrition Examination Survey (NHANES) 2011-2012 to 2017-2018 geometric means among 18 - 49 year-old females

MAMAS PFAS Levels Compared to National Data

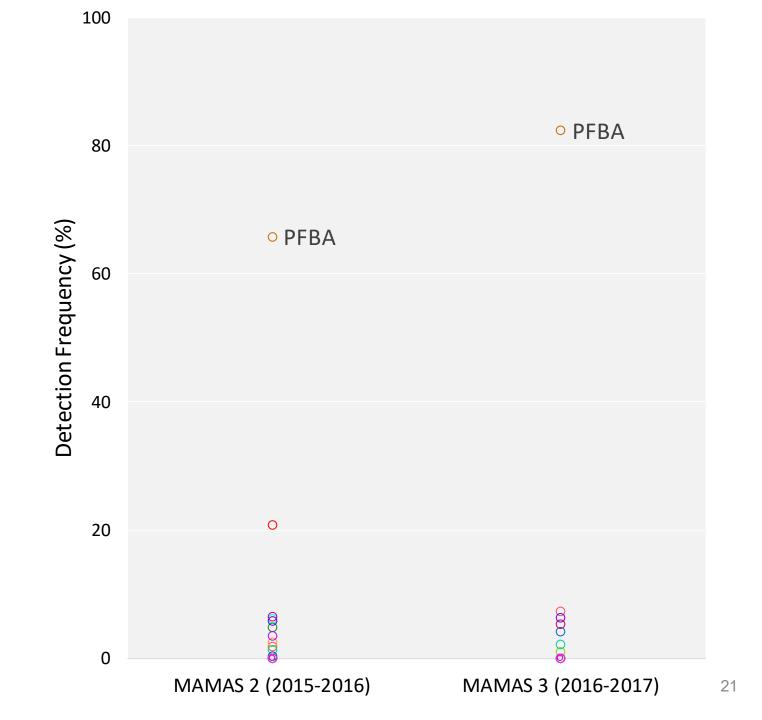
- PFOS: similar trend and relative level
- PFOA: similar trend and relative level for White, Hispanic, Black participants
 - Nationally, high levels among Whites and Asians. Asian participants had lower levels than White participants in MAMAS 1 and MAMAS 3.
- PFHxS: Higher levels in 2012 and then decreased at a faster rate
- PFNA: Similar levels in 2012 and then decreased at a slower rate

National Trends in PFDA and PFUnDA Levels


MAMAS PFDA and PFUnDA Levels Compared to National Data

- PFDA: similar trend and relative level
- PFUnDA: inconsistent with national data steady levels across all race/ethnic groups

Detection Frequency (%)


Detection Frequencies of Additional PFASs

- Lab measured an additional 18 • PFASs in MAMAS 2 and 19 in MAMAS 3.
 - 12 detected in MAMAS 2 ٠
 - 7 detected in MAMAS 3 •
- One analyte method detection ٠ limit (MDL) differed between MAMAS 2 and MAMAS 3; highest MDL was applied to all samples for this comparison.
- MAMAS 2 and MAMAS 3 differ by ۲ sampling regions and time.

Detection Frequencies of Additional PFASs

- High detection frequency of PFBA in MAMAS 2 and MAMAS 3
- PFASs with low detection frequencies will be tracked in future studies

PFBA in MAMAS 2-3 Compared to Other Studies

Study/Citation	Years	Study population and location	Ν	% detect	MDL
Gockener et al.	2009-2019	German Environmental Specimen Bank	100	0%	0.25
Ingelido et al.	2015-2016	Italy, adults exposed to contaminated drinking water	257	7%	0.02
		Italy, adults not exposed	250	17%	0.02
MDH	2008	East Metro PFC Biomonitoring Pilot Project	196	25%	0.01
SHOW	2014-2016	Wisconsin adults, subset of statewide representative	605	29%	0.039
ACE 1	2016	Chinese adults residing in SF Bay Area	96	63%	0.0500
MAMAS 2	2015-2016	Prenatal samples from various CA counties	292	66%	0.0500
ACE 2	2017	Vietnamese adults residing in SF Bay Area	99	68%	0.0500
MAMAS 3	2016-2017	Prenatal samples from various CA counties	96	82%	0.0500
Polachova et al.	2019	Czech city policemen, Spring	142	89%	0.01
		Same policemen, Autumn	132	88%	0.01

N total number of participants, MDL method detection limit, MDH Minnesota Department of Health, SHOW Survey of the Health of Wisconsin, ACE Asian/Pacific Islander Community Exposures Project

Persistent Organic Pollutants POPs

- Polychlorinated biphenyls (PCBs)
 - Products and building materials produced before 1980
- Polybrominated diphenyl ethers (PBDEs)
 - Foam in furniture, pillows, motor vehicle seats, and baby products manufactured before
 2006
 - Casing of electronics, some mattresses and upholstery fabric manufactured before 2013
- Organochlorine pesticides (OCPs)
 - Agriculture and for home pest control
 - All OCPs measured are no longer used in the U.S.

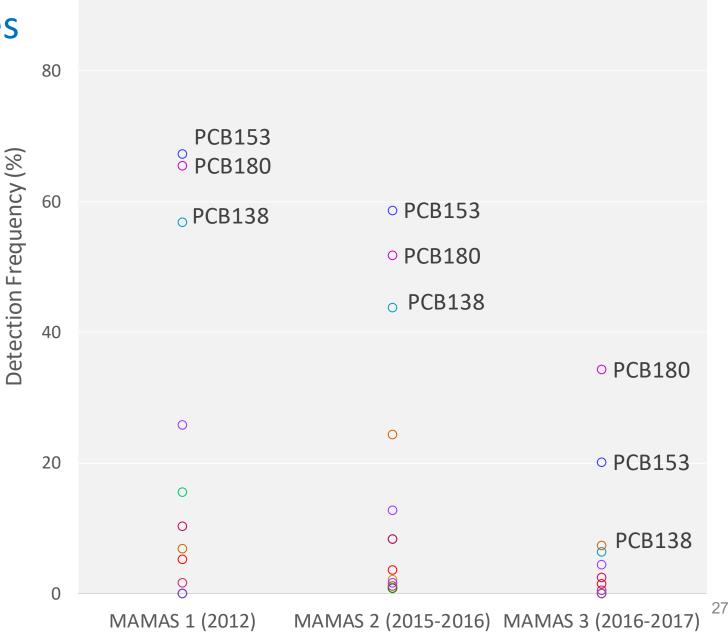
Question

• Did California residents' exposure to specific POPs decrease across the MAMAS studies?

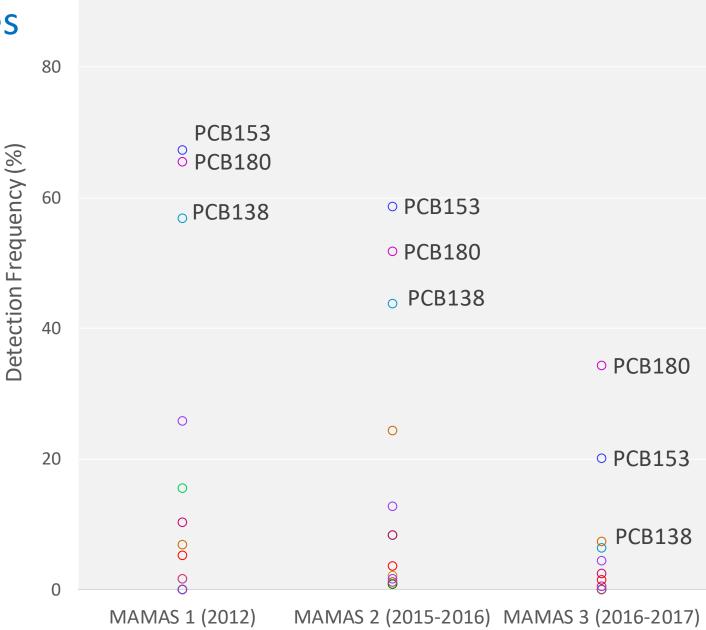
Demographics Characteristics of POPs Subsample

	MAI	MAS 1 2012		ЛАS 2 -2016		MAS 3 -2017
	Ν	%	N	%	Ν	%
Race/ethnicity						
White	20	35	68	28	51	25
Black	20	35	52	21	51	25
Hispanic	18	31	71	29	51	25
Chinese	0	0	17	7	22	11
Filipina	0	0	26	11	19	9
Vietnamese	0	0	11	5	10	5

Demographics Characteristics of POPs Subsample


	MAMAS 1 2012		MAMAS 2 2015-2016		MAMAS 3 2016-2017	
	Ν	%	Ν	%	N %	
Medi-Cal						
Yes	22	38	70	29	66 32	
No	36	62	175	71	138 68	
Age, years						
<15	0	0	0	0	0 0	
15-19	3	5	8	3	5 3	
20-24	10	17	35	14	20 10	
25-29	15	26	73	30	59 29	
30-34	18	31	81	33	75 37	
35-39	11	19	41	17	38 19	
40-44	1	2	6	9	7 3	
≥45	0	0	1	0	0 0	

PCB Detection Frequencies


100

- 15 PCBs measured in MAMAS 1, MAMAS 2, and MAMA 3.
 - Some PCBs were not detected
- Since analyte method detection limits (MDLs) differed across studies, the highest MDL was applied to all samples for this comparison.

PCB Detection Frequencies

- MAMAS 1 MAMAS 3 vary by demographics, time, and region.
- Decreasing detection frequency of PCB analytes with each study.

28

100

PBDE Detection Frequencies

- 9 PBDEs measured in MAMAS 1, MAMAS 2, and MAMA 3.
 - Some PBDEs were not detected
- Since analyte method detection limits (MDLs) differed across studies, the highest MDL was applied to all samples for this comparison.

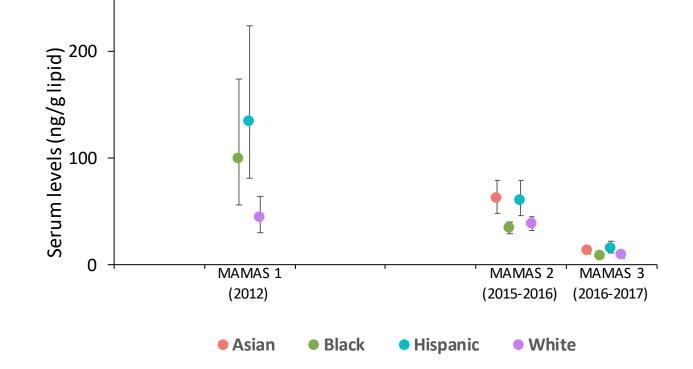
80 0	
80	
80	
0 0 BDE 47 0 0 BDE 100 0 BDE 153 0 BDE 153 0 BDE 47 0 BDE 153 0 BDE 47	
0 0 BDE 47 0 BDE 100 0 BDE 153 0 BDE 153 0 BDE 47 0 BDE 153 0 BDE 47	
BDE 47 BDE 100 BDE 153 BDE 153 BDE 47 BDE 47 BDE 47 BDE 47 BDE 47 BDE 40	
60 • BDE 100 • BDE 153 • BDE 153 • BDE 47 BDE 100	
• BDE 100 • BDE 100 • BDE 153 • BDE 47	
© BDE 47	
• BDE 99	
)ete	
• BDE 99	
• BDE 153	
20	
BDE 100 © BDE 99	
0 8DE 99 BDE 47	
MAMAS 1 (2012) MAMAS 2 (2015-2016) MAMAS 3 (2016-2017) ²	9

PBDE Detection Frequencies

- MAMAS 1 MAMAS 3 vary by demographics, time, and region.
- With each study, decreasing detection frequency for PBDEs.

	100				
es					
	80				
cy (%)		• BDE 47			
equen	60	BDE 100BDE 153	• BDE 153		
Detection Frequency (%)	10		_o BDE 47 BDE 100		
Detect	40	• BDE 99			
			• BDE 99	° BDE 153	
	20			PDF 100	
	0	8	8	BDE 100 BDE 99 BDE 47	
	0	MAMAS 1 (2012)		MAMAS 3 (2016-2017)	30

Organochlorine Pesticides Levels in MAMAS 1 -3

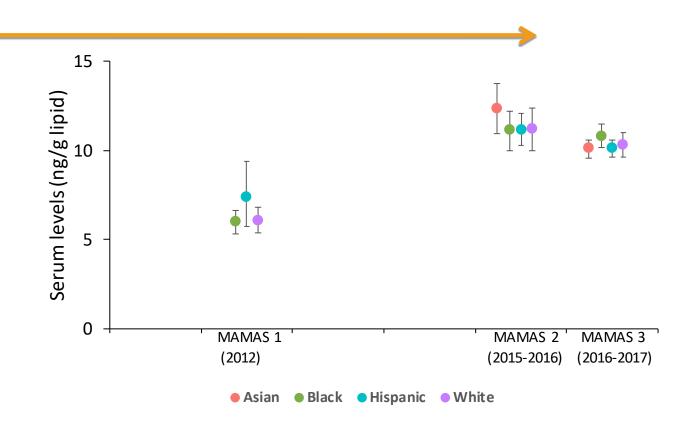

 Two organochlorine pesticides were detected in nearly all samples: every participant had measurable levels of p,p-DDE (metabolite of DDT) and/or HCB

• DDT

- Banned from use in U.S. in 1972, with exceptions
- Per ATSDR, last produced in the U.S. in the 1980s
- DDT used abroad to control vector-borne diseases
- HCB
 - Use in U.S. discontinued in 1984
 - Chemical production by-product and still produced outside the U.S.

p,p-DDE Levels by Race/Ethnicity

- p,p-DDE levels decreased for all race/ethnicity groups
 - Decreasing trend consistent with national data
- Higher exposures among Hispanic and Asian participants
 - Consistent with national data



Geometric means and 95% confidence intervals

HCB Levels by Race/Ethnicity

- HCB levels higher in MAMAS 2 and MAMAS 3 compared to MAMAS 1 for all race/ethnic groups
 - Inconsistent with steady levels in national data

Geometric means and 95% confidence intervals

Looking Forward

- MAMAS confirmed feasibility of leveraging GDSP
 - Archived samples in California Biobank Program
 - Prospective sample collection from non-Biobank counties
- Aim of surveillance is to determine population-level estimates
 - Temporal trends
 - Geographic differences
 - Demographic subgroups

Next Steps: MAMAS collaborations

- Understanding exposure sources
 - Geospatial mapping of PFAS exposure sources
- Additional environmental chemicals
 - Potential add-on analyses: short-chain PFASs, total PFAS method
- Exposure and health
 - Associations with birth outcomes
 - Potential add-on analyses: biomarkers of immune response

BIOMONITORING CALIFORNIA MEASURING CHEMICALS IN CALIFORNIANS

