Urinary Metabolites of PAH Derivatives as Exposure Biomarkers of Air Pollution Sources

Yan Lin, PhD
Postdoctoral Associate at Duke Global Health Institute

Email: yan.lin@duke.edu

UCLA

Biomonitoring California Scientific Guidance Panel Meeting
March 20, 2024

Disclosure

I declare no conflict of interest associated with this presentation.

Exposure Biomarker

Biomarkers of susceptibility

> Exposure Biomarker: A xenobiotic substance OR its metabolites OR the adducts between xenobiotic agent and biological molecules in biological systems and samples.
$>$ Air Pollution: A chemical MIXTURE!

Polycyclic Aromatic Hydrocarbons (PAHs)

NAP

ANT

FLU

\checkmark Source: all combustion processes (e.g., vehicle emission)
\checkmark Exposure routes: inhalation and ingestion
\checkmark Biomarkers:
Urinary metabolites, DNAadduct, hemoglobinadduct, albumin adducts.
$>$ PAHs are originated from major air pollution sources (e.g., vehicle emission, coal and biomass burning).
$>$ PAHs are semi-volatile chemicals that exist in both gaseous and particulate phases.
P PAHs are considered as major toxic components of air pollution mixture.

Chains of Accountability - Air Pollution

Generic vs. Source-specific Biomarkers

Some PAH derivatives are good tracers for sources.

Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE Sources, transformation, and health implications of PAHs 10.1002/2015JJO23628

Key Points:

Level of PM_{25}-bound PAHs and
derivatives was high in heating season
in Beijing

Environmental Pollution
journal homepage: www.elsevier.com/locate/envpol

Concentrations and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in the atmosphere of North China, and the transformation from PAHs to NPAHs

Yan Lin ${ }^{\text {a }}$, Xinghua Qiu ${ }^{\text {a, " }}$, Yiqiu Ma ${ }^{\text {a }}$, Jin Ma ${ }^{\text {b }}$, Mei Zheng ${ }^{\text {a }}$, Min Shao ${ }^{\text {a }}$

A novel approach for apportionment between primary and secondary sources of airborne nitrated polycyclic aromatic hydrocarbons (NPAHs)

Yan Lin ${ }^{\mathrm{a}, \mathrm{b}}$, Xinghua Qiu ${ }^{\mathrm{a},{ }^{* *}}$, Yiqiu Ma^{a}, Junxia Wang ${ }^{\mathrm{a}}$, Yusheng Wu ${ }^{\mathrm{a}}$, Limin Zeng ${ }^{\mathrm{a}}$, Min Hu ${ }^{\text {a }}$, Tong Zhu ${ }^{\text {a }}$, Yifang Zhu ${ }^{\text {b, " }}$

	Science of the Total Environment	$(-)$

Atmospheric PAHs in North China: Spatial distribution and sources
 Xuesong Wang ${ }^{\text {a }}$, Tong Zhu ${ }^{\text {a }}$, Xinghua Qiu ${ }^{a}$, Mei Zheng ${ }^{\text {a. }}$.

Air Pollution in Global Mega-Cities

Los Angeles

$\mathrm{PM}_{2.5}$ levels: $\sim 16.2 \mu \mathrm{~g} / \mathrm{m}^{3}$

Source: Pyrogenic + Petrogenic

Beijing

$\mathrm{PM}_{2.5}$ levels: $\sim 87.0 \mu \mathrm{~g} / \mathrm{m}^{3}$

Source: Pyrogenic

Air Pollution and Cross－boundary Travels

定负负 Subjects

UCLA
（LA－after）
Sample collection
2017

Air Pollution Levels During the Travel

Panel 2014

14 students
5 men and 9 women
Average age $=23.3$ years

Panel 2015
13 students
3 men and 10 women
Average age $=27.8$ years

Panel 2016
8 students
3 men and 5 women
Average age $=22.6$ years

Panel 2017

10 students
8 men and 2 women Average age $=22.0$ years

- Ambient $\mathrm{PM}_{2.5}$ levels in Los Angeles
- Ambient $\mathrm{PM}_{2.5}$ levels in Beijing
- Urine Collection
> Air pollution level is constantly higher in Beijing than Los Angeles;
> Air quality has been improved in Beijing from 2014 to 2017.
(Data source: national air quality monitors within 30 km of the UCLA $(\mathrm{n}=4)$ and Peking University ($\mathrm{n}=18$)

> Smoking: all non-smokers, secondhand smoke monitored by urinary cotinine.
> Diet: 8 hour fast prior to urine collection, barbeque intake surveyed by questionnaire.

Urinary PAH Metabolites

Levels of urinary PAH metabolites were
$>$ Higher in Beijing
$>$ Decreased from 2014 to 2017 in Beijing
$>$ Associated with ambient NO_{2} and $\mathrm{PM}_{2.5}$ levels

Petrogenic Sources in Los Angeles

1 out of 3 People in Los Angeles Lives Within a Mile of an Oil Well

As the fight over fracking heats up, a new report shows that millions of Californians live uncomfortably close to oil and gas rigs.
> There are substantial pyrogenic emissions (i.e., vehicle exhaust) in both Los Angeles and Beijing.
$>$ Los Angeles also has many petrogenic sources.

Pyrogenic sources (combustion process, including vehicle exhaust, coal and biomass burning)

Phenanthrene (PHE)

Petrogenic sources

(non-combustion process related to fossil fuel and refine oil products)

2-Methyl-Phenanthrene (2-MePHE)

2-MePHE/PHE as a Source Diagnostic Ratio

2-MePHE/PHE ratio in environmental samples linked to pyrogenic or petrogenic sources (Boonyatumanond et al., 2007; Hedberg et al., 2002; Lin et al., 2015; Liu et al., 2017; Nalin et al., 2016; Pereira et al., 1999)

No biomarker is available to assess exposure to Methylated-PAHs.

Carboxylic Acid Metabolite of Methylate-PAHs

(Huang et al, 2017)
> In-vitro studies based on human liver microsome found PAHs carboxylic acid as the major metabolites of methylated-PAHs.
$>$ However, it is unknown whether 2-PHECA exists in human urine.

Analytical Method

(Lin et al, 2020)
> We developed a state-of-the-art analytical method for simultaneous detection of £OH-PHEs and 2-PHECA in human urine.

> Both 2-PHECA and $\mathrm{\Sigma OH}$-PHEs levels were higher in Beijing than LA.

Field Study

Petrogenic sources (in Los Angeles) (in Beijing)

> We observed higher 2-PHECA/ $\mathrm{OOH}-\mathrm{PHEs}$ ratio in Los Angeles, suggesting greater contribution from petrogenic sources.

> There are significant increases in 2-PHECA/ $\mathrm{\Sigma OH}-\mathrm{PHEs}$ ratio from 2014 to 2017 in both Los Angeles and Beijing.
> This may relate to both cities' efforts to reduce pyrogenic sources such as vehicle emission.

Cross-Validation Study

Personal air samples
2-MePHE
2-MePHE/PHE

589 paired samples from 120 Beijing residents

Associations?

Morning urine samples
2-PHECA/LOH-PHEs
> A cross-validation study was conducted among 120 residents of Beijing.
> 589 paired urine and personal $\mathrm{PM}_{2.5}$ samples were collected in 2013-2015.
> Associations were examined between personal exposure to 2MePHE and urinary levels of 2-PHECA, and between personal 2-MePHE/PHE ratio and urinary 2-PHECA/ $\Sigma \mathrm{OH}-\mathrm{PHEs}$ ratio.

Cross-Validation Study

> Personal exposure to 2-MePHE was positively associated with urinary levels of 2-PHECA.
> Personal 2-MePHE/PHE ratio was positively associated with urinary 2PHECA/ $\mathrm{OOH}-\mathrm{PHEs}$ ratio.

Cross-Validation Study

> There are drastic differences in air pollution levels and sources, as well as resident's time-activity pattern between heating and non-heating seasons.
> We found the association was modified by season, suggesting another factor that might influence the relationship between external exposure and biomarker levels.

Cross-Validation Study

Environmental

 \title{ Precursors

}

 \title{Precursors
}}

OH-PAHs

PAH carboxylic acid

Summary

Biomarker

PAHs

Methylated-PAHs

Air Pollution
Sources

Generic
Combustion

> Petrogenic $>$

Pyrogenic

Tobacco smoke, alcohol

PKU

Xinghua Qiu
Tong Zhu
Jicheng Gong
Jing Shang
Yiqun Han
Yanwen Wang

UCLA

Yifang Zhu Jesus Araujo
Chihong Tseng
Kym Faull
Fen Yin
Gaja Ramanathan

Duke

Jim Zhang
Mike Bergin
Heather Stapleton
Linchen He
Tim Wang
Zhenchun Yang

This work was funded by the National Institute of Environmental Health Sciences and the National Natural Science Foundation of China.

Thank you!!

