

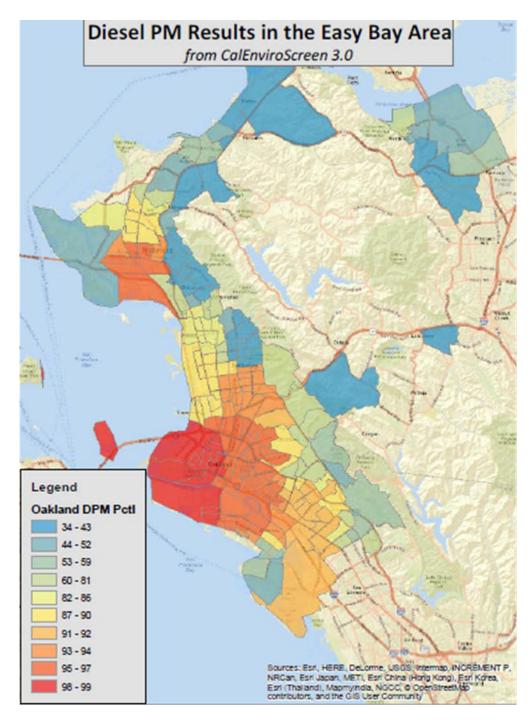
Duyen Kauffman Office of Environmental Health Hazard Assessment

Presentation to the Scientific Guidance Panel Meeting November 9, 2017 -- Richmond, CA

Project partners and staff

- **Biomonitoring California:** Duyen Kauffman; Senior Environmental Scientist; Sara Hoover; Regan Patterson; Josephine DeGuzman; Julian Perez
- CERCH, UC Berkeley: Asa Bradman; Rosemary Castorina; Marina Rowen
- University of Washington: Chris Simpson; Michael Paulsen

- Directly assess exposures to diesel exhaust in selected East Bay communities in the San Francisco Bay Area
- Compare levels of diesel biomarkers in child-parent pairs to increase understanding of exposure patterns within a household and across age groups
- Collect samples in winter and spring to look at seasonal differences in exposure to diesel exhaust



Project Goals, cont'd

- Further evaluate 1-nitropyrene (1-NP) as a marker for diesel exhaust exposure
- Examine the robustness of various measures of diesel exhaust exposure compared to biomonitoring results
 - > CalEnviroScreen's diesel particulate matter indicator

 Generate data to help evaluate the effectiveness of California's diesel regulations

Identifying Neighborhoods

- Identify neighborhoods with a range of diesel exhaust exposure, based on:
 - CalEnviroScreen's diesel particulate matter indicator (based on data from the California Air Resources Board)
 - Diesel truck traffic patterns on nearby highways & major routes through neighborhoods
 - Local air pollution mapping (see for example, Apte et al., ES&T 2017)
- Evaluate additional stressors as factors for selecting locations
 - Housing burden and poverty indicators from CalEnviroscreen

Working with Communities

- Introduce the project to local organizations, schools, and agencies, and enlist their help with recruitment. Groups to engage include:
 - > West Oakland Environmental Indicators Project
 - > Schools involved in air monitoring studies
 - >Breathmobile[®] sites
 - >YMCA childcare centers

Basic Study Design

- East Bay: Oakland, Richmond, San Pablo
- Fifty child-parent pairs
 - > Children 3-6 years old
- Two sampling events for each household
 - > Winter 2017/2018
 - Urine, indoor air, and dust samples
 - ≻ Spring 2018
 - Urine and indoor air samples

Data Collection

Day 1 -- Home visit #1

- > Exposure questionnaire
- >Home walk-through
- "i-gotU" GPS data loggers for child & parent
- > Activity diaries for child & parent
- >Black carbon sensor
- Collection of vacuum bag for house dust sample

Data Collection, cont'd

Day 4 -- Home visit #2

- Follow-up questionnaire
- >Collection of:
 - Activity diaries
 - GPS data loggers
 - Black carbon sensor
 - Urine samples from child & parent
- Subset of up to 15 families to collect daily urine samples x 4 days
- Repeat 2 home visits in spring 2018

Time	At Home	In Transit	Diesel (DK = Don't Know)	Away from Home
12 noon	Indoor / Outdoor	Ś 🏟 🚥 🛲 🚃	Yes / No/ DK	Childcare / School / Other
		Ś 🎄 🔤 🚗 📟		Childcare / School / Other

At any time during these 24 hours, was your child near any of the following:

	Fireplace	Bonfire	Trash fire	Brush fire	Gas cooking	Wood cooking	Charcoal cooking	Cigarettes	Other tobacco products
I	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No	Yes / No

Excerpts from child activity diary

Laboratory Measurements

• Urine

- > 1-Nitropyrene metabolites
- Creatinine
- > Specific gravity

• Dust

>1-Nitropyrene

• Air

- >1-Nitropyrene
- > Black carbon: Using real-time sensor developed by Thomas Kirchstetter at Lawrence Berkeley National Laboratory

Black carbon sensor

Results Return

- Return individual biomonitoring results to participants who request them
 - Informational packet: urinary results, comparison to study population, fact sheets on diesel exhaust and 1-nitropyrene
 - > Support from health educator and physician
- Return separate packet of environmental sampling results, including analysis of:
 - > Dust from vacuum bag
 - > Filters from black carbon sensor

Other Follow Up

- Conduct community meetings to present overall study results
- Share findings

Post overall study results on websitePrepare scientific publications

- Identify ways to support exposure reduction
- Maintain relationships with community organizations

Next Steps

- Obtain official approval from both IRBs
- Launch outreach and recruitment activities with potential participants
- Begin home visits in late November/early December

NC)VE	EM	BE	R		
М	т	W	т	F	S	S
		1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28	29	30			

Questions and Discussion