Report to Scientific Guidance Panel

Jianwen She, Ph.D.

California Department of Public Health Environmental Health Laboratory

Sacramento, CA November 14, 2013

Overview

- Phthalate metabolites method update
- Project sample analyses status
- FOX study results: metals in urine & arsenic speciation
- BPA analogs method update
- Recent publications
- Future work

Phthalate Metabolites Method Update: Automated Sample Preparation

- Increased sample throughput with automatic sample processing
- Reduced sample volume required for analyses
- Cost effective with reusable HPLC cartridges used as SPE columns
- Increased sensitivity & lower detection limits

Phthalate Metabolites Method Update: Analyte Panel Expansion

Full Analyte Name	Abbreviation	Parent Compound (Abbreviation)		
Mono-(3-carboxypropyl)	mCPP	Di-n-octyl phthalate (DOP),		
phthalate		Dibutyl phthalate (DBP)		
Mono-ethyl phthalate	mEP	Diethyl phthalate (DEP)		
Mono-(2-ethyl-5-	F CDD	Di 2 othylboyyl abthalata (DEUD)		
carboxypentyl) phthalate	mECPP	Di-2-ethylhexyl phthalate (DEHP)		
Mono- <i>n</i> -butyl phthalate	mBP	Benzylbutyl phthalate (BzBP), Dibutyl		
mono m baty: pintinarate	11151	phthalate (DBP)		
Mono-benzyl phthalate	mBzP	Benzylbutyl phthalate (BzBP)		
Mono-cyclohexyl phthalate	mCHP	Dicyclohexyl phthalate (DCHP)		
Mono-(2-ethyl-5-	···· FIIIID			
hydroxyhexyl)phthalate	mEHHP			
Mono-(2-ethyl-5-oxohexyl)	mEOUD.	Di 2 athulhavul ahthalata (DEHD)		
phthalate	mEOHP	Di-2-ethylhexyl phthalate (DEHP)		
Mono-2-ethylhexyl	m EUD			
phthalate	mEHP			
Mono- isobutyl phthalate	miBP	Di-isobutyl phthalate (DiBP)		

Project Sample Analyses Status

	MIEEP	FOX	Pilot BEST	
Methods in Production	(blood n=136)	(blood n=101)	(blood n=110)	
	(urine n=89)	(urine n=101)	(urine n=109)	
Metals in blood	136	101	110	
Creatinine	89	101	109	
Phthalate metabolites	89	101	109	
OP specific metabolites,	89	101	100	
pyrethroids & herbicides	69	101	109	
Environmental phenols	89	101	90	
OH-PAHs	88	101	109	
Metals in urine	89	101	109	
Arsenic speciation*	13	29	29	
Perchlorate	not requested	not requested	109	

^{*}Samples are only analyzed if total urinary arsenic levels are ≥20 µg/L

FOX Results: Metals in Urine

^{*}Total arsenic values are scaled down by a factor of 10

FOX: Arsenic Speciation Analysis Protocol

¹ Total urinary arsenic trigger level for speciation is 20 μ g/L; chosen to ensure analysis of any samples that may exceed 20 μ g/L inorganic arsenic & related species.

² 20 μg/L corresponds approximately to the 95th percentile of the sum of inorganic arsenic & related species (As-III, As-V, MMA, and DMA [abbreviated here as "inorganic arsenic"]) from NHANES 2003-2004 (Caldwell et al., 2009).

FOX Results: Elevated Inorganic Arsenic Levels

Category	Arsenic Species	Urinary Levels, (μg/L) (range, n=5)		
Inorganic arsenic & related species	Arsenous (III) acid	LOD - 3.22		
	Arsenic (V) acid	all < LOD		
	Monomethylarsonic acid	LOD - 6.05		
	Dimethylarsinic acid	18.9 - 29.1		
Organic arsenic	Arsenobetaine	2.54 - 18.2		
	Arsenocholine	LOD - 1.94		

^{*}Limit of detection (LOD) for all listed analytes is 1.00 μg/L

 A follow-up survey was offered to the 5 participants with urinary inorganic arsenic ≥ 20 µg/L – survey results are being reviewed

FOX Results: Elevated Total Arsenic Levels

For the two participants with elevated **total** urinary arsenic ($\geq 50 \mu g/L^1$):

- Arsenobetaine and arsenocholine were the major contributors to the total level
 - Recent fish or seafood consumption is the likely source of these organic arsenic species
- Inorganic arsenic levels were not elevated

¹ Level of concern for total urinary arsenic established by CDC

BPA Analogs Method*

BPA

BPF

^{*}p,p'-Bisphenols

BPA Analogs Method*

Full Analyte Name	Abbreviation	Precision (%RSD), n=6		Accuracy (% recovery), n=6	
		QC-10 ppb	QC-50 ppb	QC-10 ppb	QC-50 ppb
2,2-bis(4-hydroxyphenyl)propane	ВРА	4	8	129	100
4,4'-[2,2,2-Trifluoro-1- (trifluoromethyl)ethylidene]bisphenol	BPAF	10	25	98	92
4,4'-(1-Methylpropylidene)bisphenol	BPB	5	18	99	98
4,4'-Methylenebisphenol	BPF	5	4	91	104
4,4'-Sulfonylbisphenol	BPS	27	17	70	98

Linear range for all listed analytes is 1-100 ppb

Recent Publications

- Manuscripts published (2013)
 - Determination of essential and toxic metals in blood by ICP-MS with calibration in synthetic matrix (Gajek et al.)
 - Matrix effects in analysis of dialkyl phosphate metabolites of organophosphate pesticides in urine by gas chromatography/tandem mass spectrometer (Wang et al.)
 - A Comprehensive Workflow of Mass Spectrometry-Based Untargeted Metabolomics in Cancer Metabolic Biomarker Discovery Using Human Plasma and Urine (Zou et al.)
 - Development of HPLC-MS/MS method for the simultaneous determination of environmental phenols in human urine (Gavin et al.)
- ❖ Visit the <u>Biomonitoring CA website</u> for a list of all publications

Future Work

- Submit all data results for Pilot BEST & start analyses for Expanded BEST samples
- Analyze laboratory collaboration samples
- Complete validation for BPA analogs method
- Explore bundling OP flame retardants method with current DAPs and OP specific metabolites methods