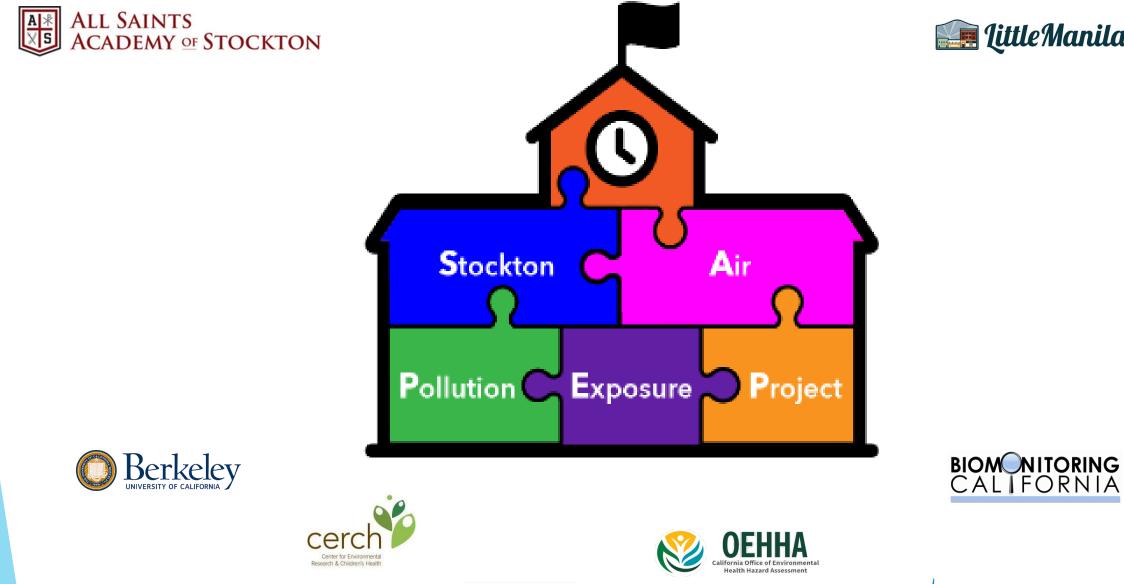
Community Biomonitoring Update

Susan Hurley, MPH


Safer Alternatives Assessment and Biomonitoring Section (SAABS) Office of Environmental Health Hazard Assessment (OEHHA)

Presentation at the Scientific Guidance Panel Meeting

July 22, 2022

Overview of presentation

- >Update on current studies
 - Stockton Air Pollution Exposure Project (SAPEP)
 - Biomonitoring component of the San Joaquin Valley Pollution and Health Environmental Research Study (BiomSPHERE)
- Planning for future studies
 - Short term
 - Long term

UNIVERSITY OF CALIFORNIA MERCED

Stockton Air Pollution Exposure Project (SAPEP)

Learn more about air pollution exposures to schoolchildren in Stockton Evaluate effectiveness of school air filtration at reducing children's air pollution exposures

SAPEP fieldwork completed

Conducted at a school in Stockton, CA

- Monday (12/6/21) Tuesday (12/7/21)
- Monday (12/13/21) Tuesday 12/14/21)
- ➤Collected:
 - Urine samples for biomonitoring
 - Air quality data
 - Survey data

SAPEP biomonitoring data

- > Urine samples have been analyzed for:
 - Metabolites of polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and nicotine
 - Biomarkers of oxidative stress and inflammation
- > Currently, we are:
 - Conducting descriptive analyses of biomonitoring data
 - Preparing results return packets

Air quality data

- Continuous air monitoring
 - Fine particulate matter (PM_{2.5})
 - Black carbon (BC)
- Integrated air sampling
 - Polycyclic aromatic hydrocarbons (PAHs)
 - Volatile organic compounds (VOCs)
 - Particle source analysis

Air monitoring data

Measurement devices for PM_{2.5} and BC co-located at six sites throughout the school, including:

- >Two outdoor locations on school grounds
- Four indoor locations
 - Two classrooms with portable stand-alone air filtration
 - Two classrooms without portable stand-alone air filtration

Stand-alone IQAir filtration

Stand-alone filtration units (IQAir HealthPro Plus) were deployed in two classrooms

➤ These IQAir units are certified to filter ≥ 99.97% of particles ≥ 0.3 microns

Teachers were instructed not to turn off the IQAir filtration units

PM_{2.5} and BC air monitoring locations

Classrooms 1 and 2: No IQAir filtration Classrooms 3 and 4: IQAir filtration

Fine Particulate Matter (PM_{2.5}) monitoring

PurpleAir sensors

- Provided continuous, real-time PM_{2.5} measurements
- Were calibrated to a local federal regulatory monitor
- Will continue to operate and provide publicly available data on PM_{2.5}

Black carbon (BC) monitoring

Aerosol Black Carbon Detectors (ABCDs)

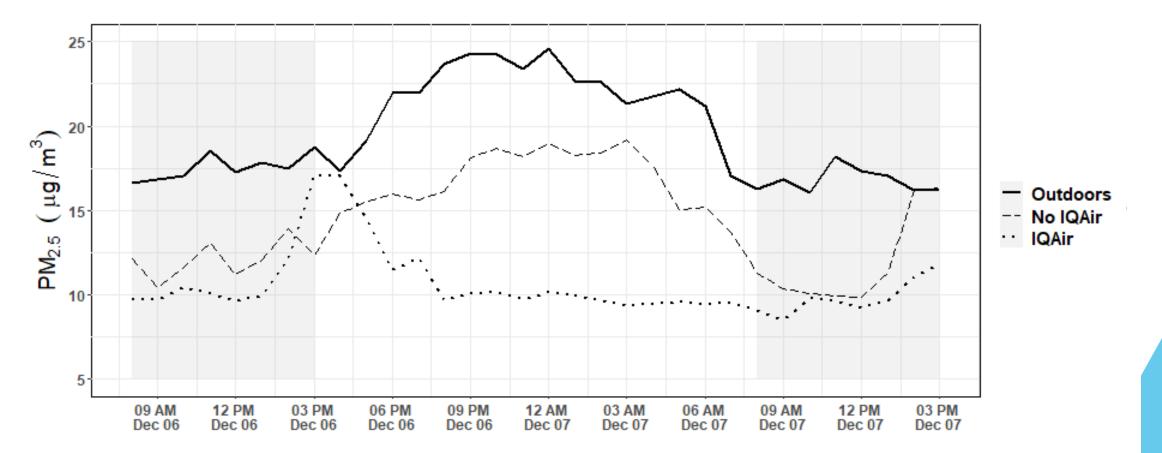
- Provided real-time black carbon concentrations at one-second intervals
- Based on optical reading of particles collected on a glass fiber filter

PM_{2.5} and BC data: preliminary analyses

>Analyses focused on data collected:

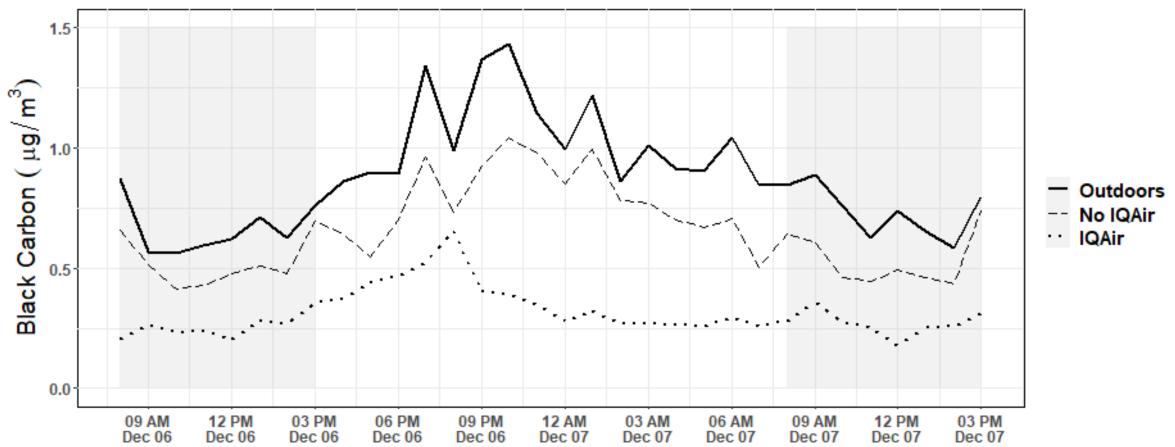
- During week one (Mon 12/6/21 Tues 12/7/21)
- 8 am Monday through 3 pm Tuesday
- Measured data were converted to hourly averages prior to analyses

PM_{2.5} and BC data: preliminary analyses (cont'd)

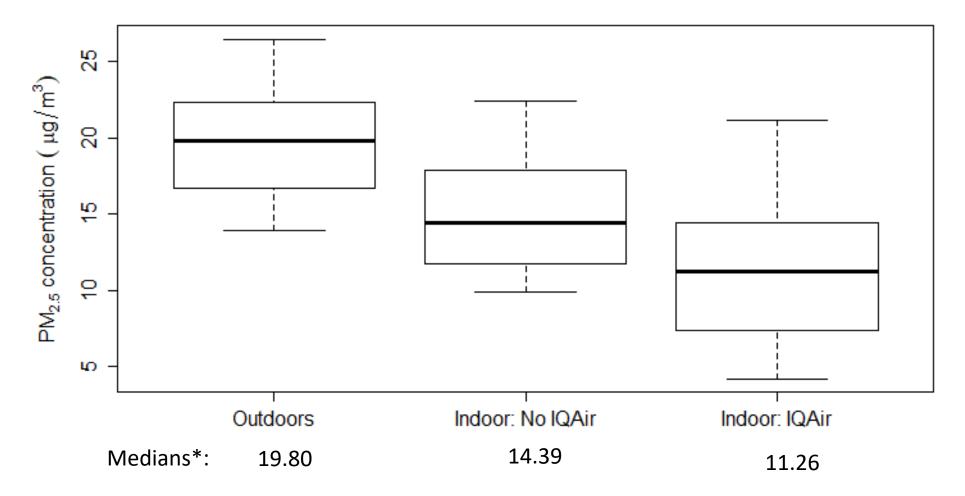

Evaluated temporal trends
 Compared air concentrations:

 In classrooms with IQAir filtration
 In classrooms without IQAir filtration

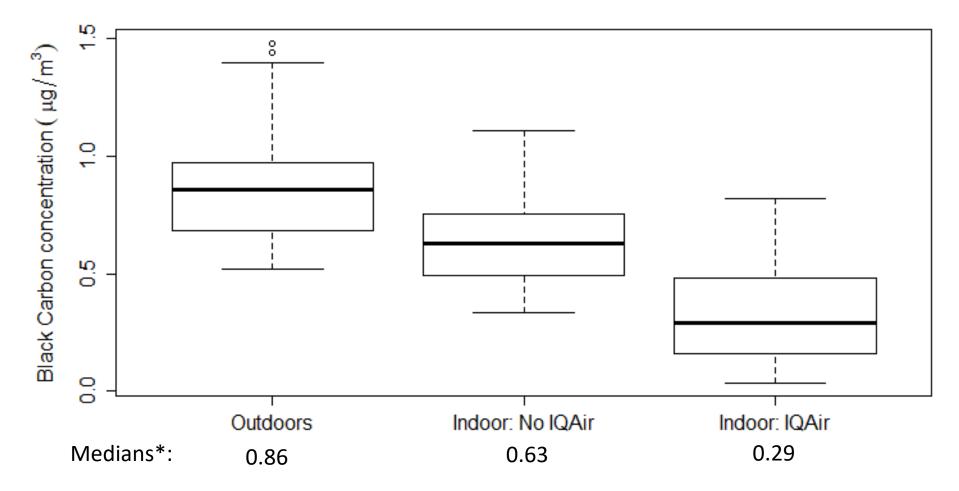
Outdoors on school premises



PM_{2.5} temporal trends



BC temporal trends


PM_{2.5} distribution: outdoors and indoors, with and without IQAir filtration

* All medians significantly differ (Wilcoxon Rank Sum Test p-value < 0.05)

BC distribution: outdoors and indoors, with and without IQAir filtration

* All medians significantly differ (Wilcoxon Rank Sum Test p-value < 0.05)

Levels of PM_{2.5} and BC were higher outdoors than indoors
 Air quality was improved in classrooms with IQAir filtration compared to those without IQAir filtration

- PM_{2.5} median concentration was 22% lower in classrooms with IQAir
- BC median concentration was 54% lower in classrooms with IQAir

Next steps

- Prepare packets with children's individual biomonitoring results and distribute to parents
- > Give presentations at community meetings to disseminate initial study findings
- Conduct descriptive analyses of biomonitoring data for posting on Program website
- Conduct integrated analyses of biomonitoring, air quality, and questionnaire data to address the project's research questions
- Disseminate final study findings to relevant stakeholders (e.g., community members, policy/decision-makers, scientific researchers)

BiomSPHERE: Biomonitoring component of the San Joaquin Valley Pollution and Health Environmental Research Study (SPHERE)

Center for Environm

Research & Children's Health

Overview of SPHERE*

- Will assess exposures to air pollutants and noise among 90 parent-child pairs living in Fresno and Stockton
- Includes:
 - Household air monitoring/sampling for selected criteria air pollutants, black carbon, and VOCs
 - Personal air sampling for PM_{2.5}
 - Measurement of noise levels
 - Administration of questionnaire to collect exposure survey data

* Funded by: California Air Resources Board Contract #20RD012; original project title "Total Exposures to Air Pollutants and Noise"

Fresno, CA *Photo credit: John Walker, Fresno Bee*

Port of Stockton, Stockton, CA *Photo credit: Stockton Record*

Overview of BiomSPHERE

>All SPHERE participants will be invited to provide urine samples

> Urine samples will be analyzed for:

Metabolites of PAHs, VOCs, and nicotine

Biomarkers of oxidative stress and inflammation

>Additional air sampling will be conducted to help interpret the biomonitoring results Planning for future community biomonitoring studies

Short-term planning

The plan for our next community biomonitoring project is to add a biomonitoring component to an existing research study that:

- Focuses on an underserved and heavily burdened community
- > Expands the Program's geographic coverage
- >Has community engagement activities already in place
- > Is collecting complementary air exposure and/or health data
- Offers opportunities to provide results that can be translated into actions to reduce exposures

Long-term planning

We plan to develop a Request for Information (RFI) to identify opportunities for future community biomonitoring studies

> The RFI will:

- Provide a systematic and transparent mechanism for gathering information to help design community biomonitoring studies
- Likely be issued in 2023 to develop studies that would be supported by contract funds from FY 2024-25 (and beyond)

Prior Program RFIs

- >Aimed at soliciting proposals for laboratory partnerships from academic researchers
- Sought to identify studies that had recently collected blood or urine samples from California residents
- ➤Goals were to:
 - Support ongoing epidemiologic or exposure assessment studies
 - Provide the Program with additional data to support its goals

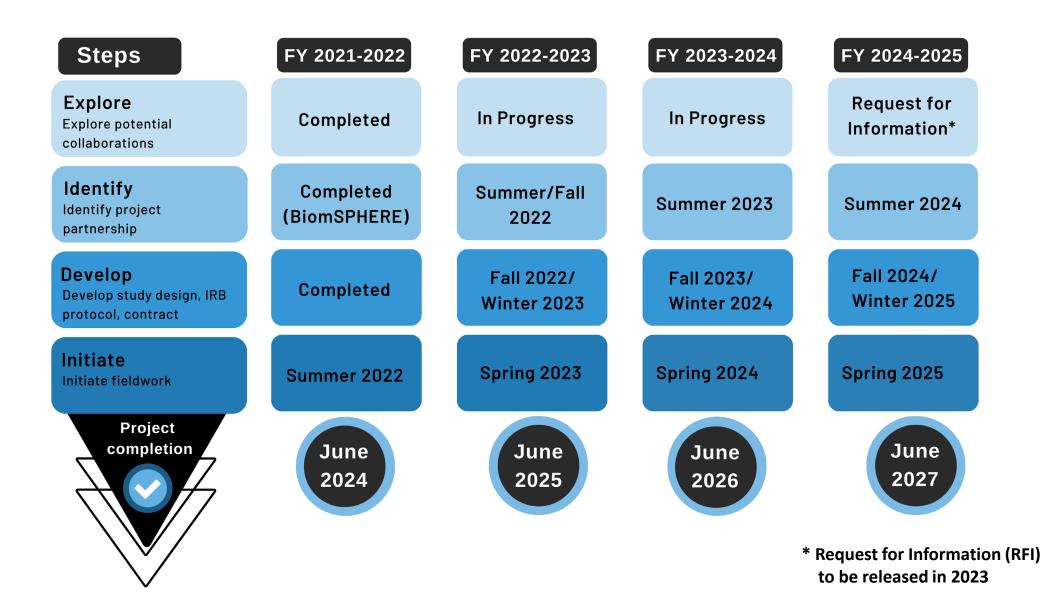
Developing a community biomonitoring RFI

➤To solicit ideas from:

Community leaders and organizations

Academic researchers

> To identify projects that address:


Air pollutants of concern

Other environmental chemicals of concern in California

> To consider projects that include:

- Designing a new biomonitoring study
- Adding a new biomonitoring component to an existing study

Planning future community biomonitoring studies

29

Thank You!

Questions from SGP and the public?

Topics for Discussion: Increasing the impact of our study findings

After a community biomonitoring study is completed, what additional steps could the Program take to maximize the impact of our study? For example, how might we provide information:

- > To other communities beyond where the study took place
- That help communities better understand and take steps to achieve reductions in their air pollution exposures
- > That could support policy changes to reduce air pollution

Topics for discussion - developing an RFI

We plan to release a Request for Information (RFI). It might be open to both community organizations and academic researchers – or it may be two separate RFIs

- What types of information should we collect to help evaluate the feasibility and impact of potential projects?
- What should the RFI process look like? (e.g., a one-time process, a continuously open process, cyclic process...)
- The goal is to gather information to identify opportunities where biomonitoring can inform and have an impact on public and community health – not to select "a winner"
 - What should the follow-up process look like?
 - How do we set and convey expectations?