Update from CDC: Phthalates and Phthalate Alternatives

Antonia M. Calafat

Organic Analytical Toxicology Branch
Division of Laboratory Sciences
National Center for Environmental Health

Biomonitoring California Scientific Guidance Panel Meeting
July 16, 2015
Oakland, CA
Outline

- Phthalates exposure generalities
- Changes in exposures
 - Use of NHANES
 - Archived samples: DINCH example
 - German Environmental Specimen Bank
- Selection of phthalate biomarkers
 - DiNP
 - DBP and DiBP
- Toxicology vs exposures
 - DPP
- Future work
What are Phthalates?

- Widely used industrial chemicals
 - As plasticizers of PVC
 - Miscellaneous products
 - Medical devices, tubing and blood bags
 - In consumer & personal care products
 - Fragranced products, cosmetics
 - Paints, ink & lacquers
 - Medications

- Adverse health outcomes in experimental animals exposed to high doses of phthalates

- Emerging data on potential human effects at background exposure levels

- Metabolites as biomarkers of exposure
The Human Exposure Scenario

- Controlled conditions, as in animal studies, do not apply
- Numerous and even unknown exposure routes and sources
- Unknown dose, duration, frequency and timing
- People exposed to chemical "cocktails" (multiple/mixtures)
- Biomonitoring to assess exposures
CDC’s Phthalates Biomonitoring Program Areas

- Assess exposure to phthalates & alternatives
- Assess associations between exposure & health
- R&D to improve Biomonitoring practices
 - Develop analytical methods
 - Identify & validate biomarkers
 - Replacement chemicals
 - Develop Standard Reference Materials
- Capacity building
 - Public Health Laboratories: Performance testing
Biomonitoring Methods

General requirements
- Sensitive
- Specific/Selective
- Accurate
- Precise

Biomonitoring-specific
- Minimum sample volume
 - Reduce solvent use & waste
- Multianalyte & high-throughput
 - Increase efficiency
- Reproducible
- Include QA/QC program
 - Accountability
- Automated
 - Cost effective

Best compromise
Accuracy: The Importance of Quantification

- Analytical standards
 - Custom synthesis
- Analytical method
- Well-maintained instrumentation
- Trained personnel
- External Quality Assessment Programs
 - G-EQUAS (http://www.g-equas.de/)
 - Four DEHP metabolites, MnBP, MiBP, MBzP
 - Accuracy of standards (neat vs solution)

Accuracy Investigation of Phthalate Metabolite Standards

Eric Langlois*, Alain LeBlanc, Yves Simard and Claude Thellen
Centre de Toxicologie du Québec (CTQ), Institut National de Santé Publique du Québec (INSPQ), Québec, Québec, G1V 5B3, Canada
NIST SRMs

- Urine from smokers (3672)
- Urine from non-smokers (3673)
- First frozen urine reference materials characterized for organic environmental contaminants
 - 11 phthalate metabolites

Table 2. Reference Mass Fraction Values for Selected Phthalate Metabolites in SRM 3672

<table>
<thead>
<tr>
<th>Phthalate Metabolites</th>
<th>Mass Fraction (µg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mono-carboxyonyl phthalate isomers</td>
<td>1.92 ± 0.06</td>
</tr>
<tr>
<td>Mono-carboxyetyl phthalate isomers</td>
<td>21.3 ± 1.1</td>
</tr>
<tr>
<td>Mono-(2-ethyl-5-carboxypentyl) phthalate</td>
<td>35.2 ± 1.7</td>
</tr>
<tr>
<td>Mono-(2-ethyl-5-hydroxyhexyl) phthalate</td>
<td>24.8 ± 0.4</td>
</tr>
<tr>
<td>Mono-(2-ethyl-5-oxohexyl) phthalate</td>
<td>14.9 ± 0.4</td>
</tr>
<tr>
<td>Mono-(2-ethylhexyl) phthalate</td>
<td>4.13 ± 0.15</td>
</tr>
<tr>
<td>Mono-(3-carboxypropyl) phthalate</td>
<td>2.99 ± 0.20</td>
</tr>
<tr>
<td>Monobenzyl phthalate</td>
<td>8.37 ± 0.18</td>
</tr>
<tr>
<td>Monoethyl phthalate</td>
<td>94.5 ± 3.0</td>
</tr>
<tr>
<td>Mono-isobutyl phthalate</td>
<td>6.40 ± 0.28</td>
</tr>
<tr>
<td>Mono--n-butyl phthalate</td>
<td>10.6 ± 0.5</td>
</tr>
</tbody>
</table>
State Biomonitoring Cooperative Agreements

- **Technical support (2009+)**
 - Training
 - Site visits
 - Advisory services

- **Quality assurance programs (2012+)**
 - In-kind performance testing
 - Phthalates & other plasticizers
 - PAHs
 - Environmental Phenols & PCPs
 - Pesticides
 - Universal Pesticides
 - Dialkyl Phosphates
 - PFCs
Exposure to Phthalates in the United States

- Most Americans (6+ years) are exposed

<table>
<thead>
<tr>
<th>Compound</th>
<th>Detection frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEHP</td>
<td>100</td>
</tr>
<tr>
<td>DiNP</td>
<td>100</td>
</tr>
<tr>
<td>DiDP</td>
<td>99</td>
</tr>
<tr>
<td>BBzP</td>
<td>98</td>
</tr>
<tr>
<td>DnBP</td>
<td>94</td>
</tr>
<tr>
<td>DiBP</td>
<td>99</td>
</tr>
<tr>
<td>DEP</td>
<td>100</td>
</tr>
</tbody>
</table>

n=2,489
Is Americans’ Exposure to Phthalates Changing?

- Some exposures increased: DiBP (↑ 121%)
- Other exposures decreased: DBP (↓ -60%)

![Chart showing NHANES sampling cycle with urine metabolite levels (µg/L)]
Americans’ Exposures Change across Phthalates

- Some exposures increased: DiNP (↑265%)
- Other exposures decreased: DEHP (↓-67%)
- Legislative actions and public scrutiny

![Graph showing Urine metabolite levels (µg/L) across NHANES sampling cycle 2005-2012 for DiNP and DEHP.](https://www.cdc.gov/exposurerreport)
Other Plasticizers: DINCH

- Phthalate alternative introduced in Europe in 2002
- DEHP replacement
 - Toys, medical devices, food packaging
- Metabolites as exposure biomarkers

Adapted from Koch et al. Arch Toxicol 2013
Are Exposures to DINCH Changing?

- Convenience U.S. adult sampling (2000-2012)
 - DINCH metabolites
 - Undetected in 2000-1
 - Increasing detection frequency after 2001
 - Increasing concentrations

- Similar results observed in Germany

<table>
<thead>
<tr>
<th>Year</th>
<th>N</th>
<th>Detection frequency (%)</th>
<th>50th (µg/L)</th>
<th>95th (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>114</td>
<td>0</td>
<td><LOD</td>
<td><LOD</td>
</tr>
<tr>
<td>2001</td>
<td>57</td>
<td>0</td>
<td><LOD</td>
<td><LOD</td>
</tr>
<tr>
<td>2007</td>
<td>23</td>
<td>4</td>
<td><LOD</td>
<td><LOD</td>
</tr>
<tr>
<td>2009</td>
<td>118</td>
<td>8</td>
<td><LOD</td>
<td>0.5</td>
</tr>
<tr>
<td>2011</td>
<td>94</td>
<td>13</td>
<td><LOD</td>
<td>1.5</td>
</tr>
<tr>
<td>2012</td>
<td>121</td>
<td>19</td>
<td><LOD</td>
<td>1.4</td>
</tr>
</tbody>
</table>

LOD: 0.4 µg/L
DINCH General Population Data

Germany
- **ESB**
 - 24-h urine samples
 - College students
 - 60 samples/year
 - 4 metabolites

USA
- **NHANES 2011-2**
 - Spot sample
 - 6+ years old
 - One metabolite (OH-MINCH)
 - Detection frequency: 24% (605/2489)
 - Range: <LOD (0.4 µg/L) to 168 µg/L
Are DINCH and Other Phthalates Replacing DEHP?

- DINP/DEHP trends in convenience samples
 - US & German general population
- DINCH & DINP may be replacing DEHP
 - Isomeric compounds
 - Starting with NHANES 2013-4, CDC will include another DINCH isomer
Monitoring Changes in Phthalates Exposures

- **Constantly evolving**
- **Identification of biomarkers**
 - In-vitro metabolism
 - In-vivo animal studies
 - Human studies
 - University of Bochum, Germany
- **Biomarkers choice**
- **Access to archived urine**
 - Convenience samples
 - General population samples
Many analytes can be measured simultaneously, but additional information is needed to demonstrate the utility of these analytes as exposure biomarkers.
Selection of Exposure Biomarkers: DINP Example

- **DINP metabolites:** MNP (~2%) and MCOP (~11%)
- **MNP** (minor metabolite): insensitive biomarker of DINP background exposures

<table>
<thead>
<tr>
<th>MNP urinary concentrations</th>
<th>MCOP urinary concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Detectable</td>
</tr>
<tr>
<td>Detectable</td>
<td>347 (12.9%)</td>
</tr>
<tr>
<td>Non-detectable</td>
<td>2100 (82.4%)</td>
</tr>
<tr>
<td>Total</td>
<td>2447 (95%)</td>
</tr>
</tbody>
</table>

- Select most abundant/relevant biomarker to minimize exposure misclassification
 - 82.4% of persons classified as exposed to DINP are misclassified based on urinary concentrations of MNP only
Dibutyl Phthalates in NHANES

- NHANES 1999-2000: MBP (MnBP + MiBP)
- NHANES 2001-12: MnBP & MiBP
- NHANES 2013+: MnBP, MiBP, 3OH-MnBP, 2OH-MiBP

Adapted from Koch et al. Arch Toxicol 2012
Nitrocellulose plasticizer
- Plastic film, inks & wood coatings

Testicular toxicant in rats

In-vivo metabolism in rats
- Nine rats
- Single oral dose (500 mg/Kg)
- Urine collected 24-h & 48-h after dose

DPP metabolite median urinary concentrations (µg/mL)

<table>
<thead>
<tr>
<th>Metabolite</th>
<th>24-h post dose</th>
<th>48-h post dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPP</td>
<td>222</td>
<td>75</td>
</tr>
<tr>
<td>MHPP</td>
<td>993</td>
<td>191</td>
</tr>
<tr>
<td>MCBP</td>
<td>168</td>
<td>29</td>
</tr>
</tbody>
</table>
Human Exposure to Dipentyl Phthalate (DPP)

- Forty-five spot samples
- Anonymously collected in 2009 from adults
 - Relatively low detection frequency for MHPP (specific)
 - No correlation between MHPP & MCBP/MCPP
- Limited exposure to DPP in US adults

DPP Metabolite Urinary Concentrations

<table>
<thead>
<tr>
<th>Metabolite</th>
<th>% Detection</th>
<th>Min (µg/L)</th>
<th>Max (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPP</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>MHPP</td>
<td>29</td>
<td><LOD</td>
<td>8</td>
</tr>
<tr>
<td>MCBP</td>
<td>4</td>
<td><LOD</td>
<td>221</td>
</tr>
<tr>
<td>MCPP</td>
<td>13</td>
<td><LOD</td>
<td>40</td>
</tr>
</tbody>
</table>
What Exposure Biomarkers Should We Measure?

- **Analytical method**
 - Can we add more analytes?
 - Instrumentation
 - DiDP vs Bis-(2-propylheptyl)phthalate (DPHP)

- **Toxicokinetics**
 - Abundance
 - Specificity

- **Target population**
 - Exposures can be population-specific
 - Age-dependent

- **Nature of exposure**
 - Background vs specific exposures
Americans are exposed to phthalates

Market changes in commercial formulations
 - Introduction of replacement chemicals
 - Phthalates (e.g., DiNP)
 - Non-phthalates (e.g., DINCH)
 - Changing exposures

Biomonitoring & biomarkers toxicokinetics
 - Specificity
 - Abundance

Method adequate for intended purpose

Banking of urine
 - Trends evaluation
Future Work

- Continue NHANES & studies on targeted populations
 - Track exposures to “legacy” & replacement chemicals
 - Fill in data gaps to better understand temporal trends and underlying reasons

- Identify & incorporate phthalate and phthalate replacement biomarkers
Acknowledgements

Manori Silva
Ela Samandar
Jim Preau
Past lab members
NCHS
Our collaborators
THANK YOU!

For more information please contact Centers for Disease Control and Prevention

1600 Clifton Road NE, Atlanta, GA 30333
Telephone, 1-800-CDC-INFO (232-4636)/TTY: 1-888-232-6348
E-mail: cdcinfo@cdc.gov Web: www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.