Associations Between Per- and Polyfluoroalkyl substances (PFASs) in Drinking Water and Serum Among Southern California Adults: Initial Results

Biomonitoring California Scientific Guidance Panel Meeting March 20, 2024

Toki Fillman Biomonitoring California Environmental Health Investigations Branch

PFAS exposure pathways

Sunderland, E.M., Hu, X.C., Dassuncao, C. *et al.* A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. *J Expo Sci Environ Epidemiol* **29**, 131–147 (2019).

PFAS exposure pathways

Sunderland, E.M., Hu, X.C., Dassuncao, C. *et al*. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. *J Expo Sci Environ Epidemiol* **29**, 131–147 (2019).

EPA's Proposed National Primary Drinking Water Regulation

Compound	Proposed	d MCLG	Pro (enfo	oposed rceable	MCL levels)	
PFOA	0 ppt		4.0 ppt			
PFOS	0 ppt		4.0 ppt			
PFNA	1.0 (unitless) Hazard Index					
PFHxS			1.0 (unitless) Hazard Index			
PFBS						
HFPO-DA (commonly						
referred to as GenX		GenX	PFBS	PFNA	PFHxS	
Chemicals)		\bigcirc	\bigcirc			Hazard
			2000		+ - - - - - - - - - - - - -	= Index Value

PFASs and drinking water in the literature

- Studies from areas with high PFAS contamination have reported significant contributions of drinking water to overall PFAS exposure
- Few studies have focused on the general population

Study objective

 To estimate the contribution of PFAS detections in drinking water to the concentration of PFASs in serum among a general population of adults in California

California Regional Exposure (CARE) Study

- Measured 12 PFASs in serum
- Exposure questionnaire
 - Demographics
 - Reproductive history
 - Diet
 - Home characteristics
 - Occupation
 - Hobbies

California Regional Exposure (CARE) Study

- CARE-LA (2018)
 - n = 430
- CARE-2 (2019)
 - n = 359
- CARE-3 (2020)
 - n = 90

PFAS testing in drinking water

California Water Board PFAS monitoring

- PFAS monitoring data from water systems included in first three investigative orders (2019 – 2022)
- Most sampling from source wells from areas with suspected PFAS contamination
- Statewide required reporting limits (2-4 ng/L) 10x lower than UCMR3

Matched CARE participants to public water systems

Study population

n = 563

Sociodemographic Characteristics	Mean (SD) or N (%)
Age	
Mean (SD)	48.5 (16)
Gender	
Female	341 (61%)
Male	222 (39%)
Race/ethnicity	
Asian alone	51 (9%)
Black alone	54 (10%)
Hispanic any	228 (40%)
Multi-racial and other	30 (5%)
White alone	200 (36%)
Education	
Some high school or less	40 (7%)
High diploma or GED	63 (11%)
College/some college/trade/tech	338 (60%)
Graduate degree	122 (22%)
Income	
\$25K or less	160 (28%)
\$25,001 to \$75,000	229 (41%)
\$75,001 to \$150,000	124 (22%)
More than \$150K	50 (9%)

Serum concentrations were highest for PFOS, PFOA, and PFHxS

n = 563

Analyta	%	Geometric	
Analyte	Detects	mean	
Et-PFOSA-AcOH	24.7	*	
Me-PFOSA-AcOH	87.2	0.05	
PFBS	8.3	*	
PFDA	64.8	0.09	
PFDoA	1.1	*	
PFHpA	45.7	*	
PFHxS	98.6	0.67	
PFNA	94.0	0.26	
PFOA	98.1	0.98	
PFOS	97.2	2.08	
PFUnDA	70.3	0.06	

*Geometric means (ng/mL) are not calculated when the detection frequency is less than 65%

CARE participant serum PFAS concentrations were lower than national levels

* Indicates statistically significant comparison

Nearly half of participants live in water systems with detections of PFASs

47% of participants (265 of 563) lived in a water system service area with at least one PFAS detection

Over half of water systems had PFAS detections

Over half of water systems had PFAS detections

16

Over half of water systems had PFAS detections

Water systems (n=70*) with at				
least one detection by analyte				
Analyte	n	%		
Et-PFOSA-AcOH	2	2.9		
Me-PFOSA-AcOH	0	0.0		
PFBS	33	47.1		
PFDA	5	7.2		
PFDoA	0	0.0		
PFHpA	21	30.0		
PFHxS	34	48.6		
PFNA	8	11.4		
PFOA	34	48.6		
PFOS	33	47.1		
PFUnDA	0	0.0		

* Total n differs for some analytes

60% (42 of 70) water systems had at least one PFAS detection

PFHxS, PFOA, and PFOS had high detection frequencies in both water and serum

Water systems (n=70*) with at least one detection by analyte				
	Analyte		n	%
Et-F	PFOSA-AcC	ЭН	2	2.9
Me-	PFOSA-Ac	ОН	0	0.0
	PFBS		33	47.1
	PFDA		5	7.2
	PFDoA		0	0.0
	PFHpA		21	30.0
	PFHxS		34	48.6
	PFNA		8	11.4
	PFOA		34	48.6
	PFOS		33	47.1
	PFUnDA		0	0.0

* Total n differs for some analytes

Serum PFAS detections and				
geometric means				
	Analyte	%	GM	
Et-F	PFOSA-AcOH	24.7	*	
Me-	PFOSA-AcOH	87.2	0.05	
	PFBS	8.3	*	
	PFDA	64.8	0.09	
	PFDoA	1.1	*	
	PFHpA	45.7	*	
	PFHxS	98.6	0.67	
	PFNA	94	0.26	
	PFOA	98.1	0.98	
	PFOS	97.2	2.08	
	PFUnDA	70.3	0.06	

- Included in final analysis:
 - PFHxS, PFOA, PFOS
 - ∑11 PFAS: sum of 11 PFAS that overlap in CARE and Water Board testing

Water Supply Distribution System

- Challenges:
 - Sampling is primarily from raw sources and not finished water
 - No water blending / mixing / volume data
 - Data coverage differs by water system

- Binary category based on statewide required reporting limits (4 ng/L)
 - No PFAS detections
 - At least one PFAS detection

• For analytes:

Statistical analysis

- Log-transformed serum concentrations
- Associations between binary PFAS detection categories and serum PFAS
 - Multivariable linear regression
 - Covariates included: age, sex, parity, race/ethnicity, education, income, and nativity

Associations between drinking water and serum PFASs

Participants living in water system service areas with PFHxS detections had higher serum levels

Summary and conclusions

In this general population of adults in Southern California, PFHxS contamination in drinking water may be a significant contributor to serum PFHxS levels. Results from this study align with literature demonstrating drinking water can contribute to PFAS exposure.

Implications and significance

- Development of health protective drinking water concentrations
- Impending EPA National PFAS Maximum Contaminant Levels (MCLs)
 - Addressing PFAS contamination in water can require time and financial resources
 - These results help support enforcement of MCLs

Acknowledgements

Co-authors:

- Scott Coffin
- Brandon Ta
- Nerissa Wu
- Kathleen Attfield

- CARE participants
- CARE study team
- CA Water Board SABL team
- OEHHA
- DTSC

State Water Resources Control Board

Questions?

Toki.Fillman@cdph.ca.gov