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NTA for the disease prevention
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Discussion point : How to prioritize NTA assays for identifying risk factors or discovering new metabolic reactions?

Rappaport, Stephen M., et al. "The blood exposome and its role in discovering causes of disease." Environmental health perspectives 122.8 (2014): 769-774.



Low signal prevalence is important
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Figure: Schematic overview of genes linked to Alzheimer's disease
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Raw variants carry more risk.

Discussion point : NTA studies should avoid thresholding signal prevalence so we don’t miss rare signals
with high PAFs.




A basic data science environment
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Discussion point : Raw LC/GC MS raw from NTA studies should be indexed in enterprise databases
to support basic queries as well as advanced signal processing.

Lai, Zijuan, et al. "ldentifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics." Nature methods 15.1 (2018): 53-56.



Annotation capacity building needs an integrated
approach
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Discussion point : How to rank experimental and in-silico evidences for a peak annotation?

Barupal, Dinesh K., et al. "A comprehensive plasma metabolomics dataset for a cohort of mouse knockouts within the international mouse phenotyping consortium." Metabolites 9.5 (2019): 101.
Bonini, Paolo, et al. "Retip: retention time prediction for compound annotation in untargeted metabolomics." Analytical Chemistry (2020).
Lu, Wenyun, et al. "Improved annotation of untargeted metabolomics data through buffer modifications that shift adduct mass and intensity." (2020).



Poor coverage of NTA data in pathway DBs
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Discussion points : ] K B/ L
1) A background database does not exist for NTA. | |
2) Assuming a statistical independence of chemicals is false. \__detected metabolites D )

Barupal, Dinesh Kumar, and Oliver Fiehn. "Chemical Similarity Enrichment Analysis (ChemRICH) as alternative to biochemical pathway mapping for metabolomic datasets." Scientific reports 7.1 (2017): 1-11
Barupal, Dinesh K., et al. "MetaMapp: mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity." BMC bioinformatics 13.1

(2012): 99.



Chemical similarity graph for NTA data
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Discussion point : How to interpret large-scale network visualization for NTA data?

Barupal, Dinesh K., et al. "MetaMapp: mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity." BMC
bioinformatics 13.1 (2012): 99.



ChemRICH uses the MeSH ontology
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Discussion points :

Lipophilicity (xlogp)

Node color indicate the proportion of
node had a positive (red) or negative
(blue) association with a phenotype.
The Kolmogorov—Smirnov was used
compute set level p-values (y-axis)

Perspectives
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Biomonitoring
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1) Perioritization of MeSH chemical ontology terms of biomonitoring
2) How to include unidentified metabolites into the set analysis ?

Barupal, Dinesh Kumar, and Oliver Fiehn. "Chemical Similarity Enrichment Analysis (ChemRICH) as alternative to biochemical pathway mapping for metabolomic datasets." Scientific reports 7.1 (2017): 1-11.



Well-known issues with the NTA data processing

1) A large number of signals (50-95%) remains unknown

2) Slow signal processing for a large batch of samples

3) Errors in peak grouping and deconvolution

4) Correction of retention time drifts for large sample sizes

5) Presence of missing values

6) Low frequency signals are often ignored

/) Presence of artifacts and background signals

8) Issues with data normalization

9) Challenging biological interpretation

10) Ethical issues in data sharing for sensitive analytes such as
illicit drugs

Discussion point : How and when to address these issues in the NTA data processing?




Chemical to
Literature Mapping



Chemical to literature mapping

Abstract

Am J Epidemiol. 2016 Feb 15:183(4):249-58. doi: 10.1093/aje/kwv24 2.
Epub 2016 Jan 27.

Plasma Biomarkers of Inflammation, the Kynurenine Pathway, and
Risks of All-Cause, Cancer, and Cardiovascular Disease Mortality:
The Hordaland Health Study.

Zuo H, Ueland PM, Ulik A, Eussen SJ, Voliset SE, Nygard O, Midttun
@, Theofylaktopoulou D, Meyer K, Tell GS.

Abstract

We aimed to evaluate 10 biomarkers related to inflammation and
the kynurenine pathway, including neopterin, kynurenine:tryptophan ratio,
C-reactive protein, tryptophan, and 6 kynurenines, as potential predictors
of all-cause and cause-specific mortality in a general population sample.
The study cohot was paricipants involved in a community-based
MNorwegian study, the Hordaland Health Study (HUSK). We used Cox
proportional hazards models to assess associations of the biomarkers
with all-cause meortality and competing-risk models for cause-specific
mortality. Of the 7,015 participants, 1,496 deaths were recorded after a
median follow-up time of 14 years (1998-2012). Plasma levels of
inflammatory markers (neopterin, kynurenine:tryptophan ratio, and C-
reactive protein), anthranilic acid, and 3-hydroxykynurenine were
positively associated with all-cause mortalty, and tryptophan and
xanthurenic  acid  were inversely  associated. Multivariate-
adjusted hazard ratios for the highest {versus lowest) quariles of the
biomarkers were 1.19-1.60 for positive associations and 0.73-0.87 for
negative associations. All of the inflammatory markers and most
kynurenines, except kynurenic acid and 3-hydroxyanthranilic acid, were
associated with cardiovascular disease (CWVD) mortality. In this general
population, plasma biomarkers of inflammation and kynurenines were
associated with risk of all-cause, cancer, and CWVD mortality.
Associations were stronger for CVD mortality than for mortality due to
cancer or other causes.

Discussion point : How far we can go in developing a chemical to publication mapping resource?

Full-text

Table

PBDEs pg/ml ww . median . range . % detect
BDE-28/33 32z |o37-2505 | 100
| BDE-47 (4657 | nd-463oa |97
| BDE-99 919 | nd-60.03 | 5
| BDE-100 [ 996 | nd9394 97
BDE-153 [59.64 | 20.31-18091 | 100
| BDE-209 1839 |nd20422 |97
PMID:29396447

Table 1. Descriptive statistics for study participants

Figure

In -paragraph
“A halving in serum folate concentrations was

moderately associated with increased risk of UCC
(OR:- 1.18; 95% CL 0.98-1.43)" - PMC6899838

Supplementary data

4-methylcatechol sulfate Xenobiotics
4-methylguaiacol sulfate Xenobiotics
4-vinylphenaol sulfate Xenobiotics
benzoate Xenobiotics
catechaol sulfate Xenobiotics
guaiacol sulfate Xenobiotics
hippurate Xenobiotics
methyl-4-hydroxybenzoate sulfate Xenobiotics
o-cresol sulfate Xenobiotics
p-cresol sulfate Xenobiotics
propyl 4-hydraxybenzoate sulfate | Xenobiotics
1,2,3-benzenetriol sulfate (2) Xenobiotics
2,2 -Methylenebis(6-tert-butyl-p-cresol) Xenobiotics
2-aminophenol sulfate Xenobiotics
2-methoxyresorcinol sulfate Xenobiotics
3-acetylphenol sulfate Xenobiotics
3-hydroxypyridine sulfate Xenobiotics
4-hydroxychlorothalonil Xenobiotics
4-methylbenzenesulfonate Xenobiotics
6-hydroxyindole sulfate Xenobiotics
benzoylcarnitine® Xenobiotics
bromine Xenobiotics

hitps://www.mdpi.com/2218-1989/10/1/34




The Blood Exposome Database

C— PubMed abstract search
D — PMC Blood metabolomics

A—HMDB - blood -
B — PubChem — PubMed Mapping
The Blood Exposome Database

Home / Introduction

INTRODUCTION

THE BLOOD EXPOSOME DATABASE

The exposome represents the sum of all exposures during the life-span of an organism (from chemicals to microbes, viruses, radiation
"""""" and other sources). Exposome chemicals are a major component of the exposome and are known to alter activities of cellular pathways
and structures. In humans, chemicals are transported throughout the body, linking chemical exposures to phenotypes such as
such as cancer, ageing or diabetes. The Blood Exposome DB is a collection of chemical compounds and associated information that were
automatically extracted by text mining the content of PubMed and PubChem datab The datab also unifies chemical lists from
metabolomics, systems biology, environmental epidemiology, occupational expossure, toxiology and nutrition fields.

WHY EXPOSOME ? WHAT IS THE BLOOD EXPOSOME
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Discussion points : 1) How publication count for a chemical can improve peak annotation in

NTA? 2) How to cover compounds that are not reported in an abstract text ?

Barupal, D. K., & Fiehn, O. (2019). Generating the Blood Exposome Database using a comprehensive text mining and database fusion approach. Environmental health

perspectives, 127(9), 097008.



Rise of the blood metabolome
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Discussion point : We should ensure that existing mass spectral libraries have EI/ESI
spectra for these compounds.




Prioritizing chemicals
for hazard assessments



Most exposures are chemicals

4 Total agents - 1079 N
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|IARC Monographs
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Mechanisms are in place to identify, monitor and regulate exposure to a specific chemical.

Vermeulen, Roel, et al. "The exposome and health: Where chemistry meets biology." Science 367.6476 (2020): 392-396.



Evidence based hazard assessments

EVIDENCE IN EXPERIMENTAL ANIMALS
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https://monographs.iarc.fr/wp-content/uploads/2018/06/Evaluations.pdf

Text mining for prioritizing chemicals
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Environ Health Perspect 2016 Dec;124(12):1823-1829. Epub 2016 May 10

Prioritizing Chemicals for Risk Assessment Using Chemoinformatics: Examples from the IARC

Monographs on Pesticides.
Guha NW_ Guyton K7 | comis D, Barupal DK

Discussion points : 1) Chemically similar agents can be evaluated together as they might have similar toxicological profile.
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Individual pesticides are represented as nodes on the chemical similarity maps.
The node size is proportional to the number of publications overall on a
pesticide and cancer: larger nodes represent more publications.

The node border width represents the number of publications on epidemiology,
cancer and the pesticide: a thicker border represents more papers. The node
color, ranging from yellow to red, also represents the number of publications on
epidemiology, cancer and the pesticide: red represents the highest count of
publications.

The node shape indicates whether results for a particular pesticide were
available in the ToxRefDB database (circle = absent; square = present).

The node border color represents the KEGG pesticide classification: green =
Organochlorine, navy blue = Phenoxy, light blue = Organophosphorus, white=
Others. IARC Monaaranhe nn the Evaliiatinn nf

Meeting 112:  Some Organophosphate Insecticides and Herbicides: Diazinon, Glyphosate,
Malathion, Parathion, and Tetrachlorvinphos

(3-10March 2015)

Call for Data (closing date 3 February 2015)

Call for Experts (closing date 30 July 2014)

Request for Observer Status (closing date 3 Movember 2014
VWHO Declaraton of Interests for this volume

Meeting 113: Some Organochlorine Insecticides and Some Chlorphenoxy Herbicides

(2-9 June 2015)

Call for Data (closing date 2 May 2015)

Call for Experts {closing date 10 October 2014)

Request for Observer Status {closing date 2 February 2015)
WHO Declaration of Irterests for this volume

2) We can develop a similar approach for the California Biomonitoring program chemical list ?

IARC, Monographs Priorities Group. "Advisory Group recommendations on priorities for the IARC Monographs." The Lancet. Oncology 20.6 (2019): 763.



Conclusions

Non-targeted analysis has a great potential for detecting high-priority
chemicals for exposome research in biospecimens.

However, a proper combination of analytical chemistry and data
science needs to be planned ahead.

Indexing raw data into enterprise databases and avoiding a signal
prevalence threshold are needed for exposomics.

Computational text mining can improve the prioritization process by
linking chemicals to publications.

Interpretational bias remains a major challenges in mining NTA.
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