

Foam Replacement Environmental Exposure Study (FREES): Biomonitoring Results

Kathleen Attfield, ScD

Environmental Health Investigations Branch, Center for Health Communities

and Biomonitoring California

Complementing the existing study with biomonitoring

- Dust and foam:
 - UC Davis partnering with Green Science Policy Institute, Silent Spring Institute, and Environmental Working Group
 - DTSC foam analysis, UC Davis dust analysis
- Urine and serum:
 - Biomonitoring California
 - DTSC urine and serum analyses
 - Titled: Foam Replacement Environmental Exposure Study (FREES)

THIS ARTICLE MEETS THE FLAMMABILITY REQUIREMENTS OF CALIFORNIA BUREAU OF ELECTRONIC AND APPLIANCE REPAIR, HOME FURNISHINGS AND THERMAL INSULATION TECHNICAL BULLETIN 117-2013. CARE SHOULD BE EXERCISED NEAR OPEN FLAME OR WITH BURNING CIGARETTES.

The upholstery materials in this product:

____ contain added flame retardant chemicals

X contain NO added flame retardant chemicals

The State of California has updated the flammability standard and determined that the fire safety requirements for this product can be met without adding flame retardant chemicals. The state has identified many flame retardant chemicals as being known to, or strongly suspected of, adversely impacting human health or development.

Biomonitoring analytes

- Polybrominated diphenyl ethers (PBDEs)
 - Prominent in foam furnishings: BDE-47, 99, 100, 153
 - Additional BDEs: 17, 28, 66, 85, 154, 183, 196, 197, 201, 202, 203, 206, 207, 208, and 209
- Organophosphate flame retardants (OPFRs)
 - Triphenyl phosphate (TPP)
 - Metabolite: diphenyl phosphate (DPP)
 - Tris (1,3-dichloro-2-propyl) phosphate (TDCPP)
 - Metabolite: bis (1,3-dichloro-2-propyl) phosphate (BDCPP)
 - Tris (2-chloroethyl) phosphate (TCEP)
 - Metabolite: bis-2-chloroethyl phosphate (BCEP)

Current time trends in PBDE biomarkers

- Environmental levels decreasing since ban in 2005 of 2 formulations
- Biomarkers were observed decreasing
- Some studies showing a recent plateau
- Biological half-lives still only partially understood
 - Estimates of 0.4-5.4 years for BDEs 47, 99, 100
 - Estimates of 3.5-11.7 years for BDE-153

Levels of PBDEs in breastmilk in CA women Guo et al. 2015

Current time trends in OPFR biomarkers

- Environmental exposures increasing since the PBDE partial phase-out
- Studies showing large increases in biomarkers since 2002
- First time reported in NHANES (2013-2014)
 - 4 OPFRs detected in >81%
- Much shorter biological half-lives hours
- Levels reflect much shorter times of recent exposure

Objective and approach

- Test if changes in biological levels of flame retardants is different between couch/foam replacers and a comparison group
 - Accounts for population time trends
 - Reduces impact of between-person differences (sex, race, age)

Comparison group: Intraprogram Pilot Study (IPP)

- Periodic sampling of volunteers
 - Mostly staff from OEHHA, DTSC, and CDPH
 - For testing or demonstration of laboratory methods
- IPPs in 2016 and 2017 focused on flame retardants
 - Participants removed from statistical analyses if had replaced furniture or moved homes
 - Similar demographics and environmental awareness to FREES participants

Participant numbers					
	First biological samples and 12 month samples				
FREES - biomarkers	25				
FREES and UC Davis dust study					
IPP	28				

Participant characteristics

Sex	FREES	IPP
Female	17(68%)	19 (68%)
Male	8 (32%	9 (32%)

Race/ethnicity	FREES	IPP
White	17 (68%)	22 (79%)
Asian	4 (16%)	6 (21%)
Hispanic	2 (8%)	
Black	1 (4%)	
Other	1 (4%)	

Dates of samples

		Median	Range
Comparison Interval (yrs)	FREES	1.23	0.8 - 1.8
	IPP	1.08	1.0 - 1.1
First sample	FREES	10/2015	9/2015 - 9/2016
	IPP	8/2016	8/2016 - 9/2016
12 month sample	FREES	4/2017	10/2016 - 10/2017
	IPP	9/2017	9/2017 - 10/2017

Schematic – example change in a PBDE over time

15

- Biological elimination
 - First order kinetics
 - Expect a log-linear decrease

Schematic – example change in a PBDE over time

Schematic – example change in a PBDE

Schematic – example change in a PBDE

Results

• Preliminary findings

Initial PBDE concentrations - combined

Geometric means, lipid adjusted (ng/g lipid)

	FREES + IPP (2015-2016, n=53)	CA Teachers' Study (2011-2015, n = 1253) ^a
BDE 47	15.04	14.6
BDE 99	4.73	
BDE 100	2.74	2.62
BDE 153	6.23	5.72

Other BDE detection frequencies:

- BDE 28 40%
- All others < 12% (17, 66, 85, 154, 183, 196, 197, 201, 202, 203, 206, 207, 208, and 209)

^aHurley et al. 2018

Initial PBDE concentrations

Geometric means, lipid adjusted (ng/g lipid)

	IPP (n=28)	FREES (n=25)	Comparison p-value
BDE 47	9.52	25.09	<0.01
BDE 99	3.26	7.18	<0.01
BDE 100	1.77	4.48	<0.01
BDE 153	4.13	9.89	<0.01

BDE 47 change over time

22

PBDE changes over time

	Chemical	Study	% change over 1 year	Difference in slopes p-value*
E	3DE 47	IPP	-21%	
		FREES	-43%	<0.01
E	3DE 99	IPP	-23%	
		FREES	-41%	0.01
E	3DE 100	IPP	-16%	
		FREES	-36%	<0.01
E	3DE 53	IPP	-17%	
Preliminar	ry findings			*p-value for t-tests of slopes

Initial OPFR concentrations

Geometric mean, unadjusted (µg/L)

	FREES + IPP (2015-2016, n=53)	NHANES, 20+ years (2013-2014)
BCEP	1.01	0.38
BDCPP	1.31	0.72
DPP	1.22	0.73

Initial OPFR concentrations

Geometric means, specific gravity adjusted ($\mu g/L$)^a

	IPP (n=28)	FREES (n=25)	Comparison p-value
BCEP	1.22	2.00	0.03
BDCPP	1.96	1.95	0.99
DPP	1.41	2.44	<0.01

^aUsing reference SG of 1.017

OPFR analytical approach

- Analytical approach is different because of short half-lives
- Expect initial drop from removal of couch followed by more stable measurements
- Compare before and after ("12 month" time point)
 - Use log-transformed specific gravity adjusted measurements
 - Linear regressions with repeated measurements
- Examine FREES correlations in 6, 12, and 18 month values

BCEP

	Timepoint	Modeled geometric mean (µg/L)	% Change	
IPP	0 month	1.22		
IPP	12 month	2.23	+84%	
FREES	Pre-couch replacement	1.97		
FREES	12 month	1.74	-12%	

FREES levels go down, but not significantly

COPPH California Department of PublicHealth

Center for Healthy Communities Biomonitoring California

BDCPP

	Timepoint	Modeled geometric mean (μg/L)	% Change	P-value for change
IPP	0 month	1.96		
IPP	12 month	1.60	-18%	0.24
FREES	Pre-couch replacement	1.95		
FREES	12 month	0.92	-53%	<0.01

FREES levels go down relative to IPP

BDCPP – FREES participants 2 Log of BDCPP concentration 1-Low correlations over 6, 12, 18 months ρ: 0.30-0.37 0 -ICC: 0.42 -1pre 06 12 18 Sampling timepoints

Center for Healthy Communities Biomonitoring California

DPP

	Timepoint	Modeled geometric mean (µg/L)	% Change	P-value for change
IPP	0 month	1.41		
IPP	12 month	0.98	-30%	<0.01
FREES	Pre-couch replacement	2.44		
FREES	12 month	2.39	-2%	0.88

FREES levels stable while IPP levels go down

California Department of Public Health

Center for Healthy Communities Biomonitoring California

Associations with behaviors - FREES

- Initial handwashing frequency
 - No associations with initial concentrations or change over time
 - Few reported any change in handwashing frequency over time
- Vegetarians vs. meat eaters
 - No associations

- Hours at work computer
 - No associations
- Sleeping on a foam mattress
 - Associated with increased initial PBDE levels, no association with change over time

Sensitivity tests

- Influence of sex and race
 - No differences by race
 - Females had greater change in BDE-99
- Different beginning ranges of flame retardants in the two groups
 - Limited FREES to only those in same range of PBDE concentrations as IPP
 - No difference
- Clustering of people in same homes did not affect chemical level changes

Future work

- Biomarker levels may not be sufficient to prove intervention was the source of any particular change
- Ways to address this further will include:
 - Coordinated analyses of dust, foam, and biomarker data
 - Further review of questionnaire data

Limitations

- Limited availability of information on behavior and behavior change for IPP
- Questionnaires for FREES may not have captured all behavior changes
- Small sample sizes reduce our confidence in assessing other sources of variability and sources of possible confounding

Compared to other intervention or time change studies

- Handwashing and house cleaning intervention (1 week each)
 - Up to 52% decreases in some OPFRs for individual intervention, increases in others
- Foam/dust exposures before and after gymnastics practice
 - 50% increase in DPP after practice
- Within-person OPFR variability over 5 weeks
 - Interclass correlations of 0.54-0.67

- Within-person PBDE variability over a year (2010-2011)
 - Interclass correlations of 0.91-0.98

Gibson et al. 2019; Carignan et al. 2016; Makey et al., 2015; Wang et al., 2019

Conclusions

- PBDE measurements decreased at a greater rate in FREES compared to IPP group, except for BDE-153
- OPFR measurements showed differing patterns and may be complicated by their short half-lives
- Attributing this intervention to any particular chemical change requires further interrogation of dust, foam, and questionnaire items

Acknowledgements

- Participants
- UC Davis Bennett lab
- Green Science Policy Institute
- Silent Spring Institute
- Environmental Working Group
- Biomonitoring California staff
- Centers for Disease Control Cooperative Agreement U88EH000481

References

- Carignan CC, Fang M, Stapleton HM, Heiger-Bernays W, McClean MD, Webster TF. Urinary biomarkers of flame retardant exposure among collegiate U.S. gymnasts. Environ Int. 2016 Sep;94:362-368.
- Gibson EA, Stapleton HM, Calero L, Holmes D, Burke K, Martinez R, Cortes B, Nematollahi A, Evans D, Herbstman JB. Flame retardant exposure assessment: findings from a behavioral intervention study. J Expo Sci Environ Epidemiol. 2019 Jan;29(1):33-48.
- Guo W, Holden A, Smith SC, Gephart R, Petreas M, Park JS. PBDE levels in breast milk are decreasing in California. Chemosphere. 2016 May;150:505-513.
- Gyalpo T, Scheringer M, Hungerbühler K. Recommendations for Evaluating Temporal Trends of Persistent Organic Pollutants in Breast Milk. Environ Health Perspect. 2016 Jul;124(7):881-5.
- Hurley S, Goldberg D, Nelson DO, Guo W, Wang Y, Baek HG, Park JS, Petreas M, Bernstein L, Anton-Culver H, Reynolds P. Temporal Evaluation of Polybrominated Diphenyl Ether (PBDE) Serum Levels in Middle-Aged and Older California Women, 2011-2015. Environ Sci Technol. 2017 Apr 18;51(8):4697-4704.
- Makey CM, McClean MD, Sjödin A, Weinberg J, Carignan CC, Webster TF. Temporal variability of polybrominated diphenyl ether (PBDE) serum concentrations over one year. Environ Sci Technol. 2014 Dec 16;48(24):14642-9.
- Ospina M, Jayatilaka NK, Wong LY, Restrepo P, Calafat AM. Exposure to organophosphate flame retardant chemicals in the U.S. general population: Data from the 2013-2014 National Health and Nutrition Examination Survey. Environ Int. 2018 Jan;110:32-41.
- Wang Y, Li W, Martínez-Moral MP, Sun H, Kannan K. Metabolites of organophosphate esters in urine from the United States: Concentrations, temporal variability, and exposure assessment. Environ Int. 2019 Jan;122:213-221

Thank you!

Questions?

Kathleen Attfield, ScD

Environmental Health Investigations Branch, Center for Health Communities and Biomonitoring California

Kathleen. Attfield@cdph.ca.gov

